亲测有效的方法:
1、余弦相似性(cosine)
(1)使用sklearn中的向量相似性的计算包,代码如下:
这个函数的输入是n个长度相同的list或者array,函数的处理是计算这n个list两两之间的余弦相似性,最后生成的相似矩阵中的s[i][j]表示的是原来输入的矩阵中的第i行和第j行两个向量的相似性,所以生成的是n*n的相似性矩阵
from sklearn.metrics.pairwise import cosine_similarity
s = cosine_similarity([[1, 0, 0, 0]], [[1, 0, 0, 0]])
print(s)
输出:
[[1.]]
(2)使用scipy包中的距离计算,代码如下:
这里的vec1和vec2都是一维的array向量。
from scipy.spatial.distance import cosine
vec1 = [1, 2, 3]
vec2 = [2, 3, 4]
s = cosine(vec1, vec2)
print(s)
0.007416666029069763
2、皮尔森相关系数(pearson)
from scipy import stats
import numpy as np
a = np.array([0, 0, 0, 1, 1, 1, 1])
b = np.arange(7)
s1 = stats.pearsonr(a, b)
s2 = stats.pearsonr([1,2,3,4,5], [5,6,7,8,7])
print("s1:", s1)
print("s2:", s2)
s1: (0.8660254037844387, 0.011724811003954626)
s2: (0.8320502943378438, 0.08050957329849848)
前面的0.866025和0.862050即为所要求的相关系数,具体用法参见:scipy.stats.pearsonr
3、欧式距离
欧式距离,即欧几里得距离,这里的计算有三种方式:
(1)已知vec1和vec2是两个Numpy array,即数组,使用numpy包计算:
import numpy
a = numpy.array([0, 0, 0, 1, 1, 1, 1])
b = numpy.arange(7)
dist = numpy.sqrt(numpy.sum(numpy.square(a - b)))
print(dist)
dist: 7.681145747868608
(2)也是使用numpy包,相对更加直接,代码如下:
import numpy
a = numpy.array([0, 0, 0, 1, 1, 1, 1])
b = numpy.arange(7)
dist = numpy.linalg.norm(a - b)
print("dist:", dist)
dist: 7.681145747868608
(3) 使用sklearn中的向量相似性的计算包,这个没有具体使用,就不贴代码了。