强化学习 最前沿之Hierarchical reinforcement learning(一)

强化学习-最前沿系列

深度强化学习作为当前发展最快的方向,可以说是百家争鸣的时代。针对特定问题,针对特定环境的文章也层出不穷。对于这么多的文章和方向,如果能撇一隅,往往也能够带来较多的启发。
本系列文章,主要是针对当前较新的深度强化学习算法和Trick,浅析其思路和方法,可以帮助你找出新的思路。希望对大家有多帮助。
另外,我会将所有的文章及所做的一些简单项目,放在我的个人网页上。
此系列传送门
水平有限,可能有理解不到位的地方,希望大家主动沟通交流。
邮箱:zachary2wave@163.com

强化学习 最前沿之Hierarchical reinforcement learning(一)

分层的思想在今年已经延伸到机器学习的各个领域中去,包括NLP 以及很多representataion learning。

近些年,分层强化学习被看作更加复杂环境下的强化学习算法,其主要思想非常简单,就是一个大的问题进行分解。比如说我们需要完成一个课题,首先要应付写立项报告,去申请,然后再写中期答辩,最后再结题报告。那么分层强化学习也是一样的一个过程,其主要思路是依靠一个上层的policy去将整个任务进行分解,然后利用下层的policy去逐步执行。

目前已经有多篇文章在这个方面进行了卓有成效的研究:

这里已经有总结比较好的博文

英文版

中文版 题目名为 强化学习遭遇瓶颈!分层RL将成为突破的希望。因为 都标明是原创,我也不知道到底是谁翻译的,大家可以直接去搜索 在这里就不给出地址了。

这里主要推荐三片文章:

2017年 ICML文章 提出封建网络FeUdal networks FeUdal networks for hierarchical reinforcement learning

这篇文章也已经在CSDN上,有了解读 传送门

2018年NIPS文章 HIRO Data-efficient hierarchical reinforcement learning

2018 AAAI 的文章 Learning Representations in Model-Free Hierarchical Reinforcement Learning

这篇博文主要来分析一下 2018年的NIPS的文章,HIRO

分层强化学习

与前面的文章当中提出的结构是一样的,提出分层强化学习(HRL)利用多层策略,多层策略去训练和决策更高维度的行为和抽象决策,从而解决困难任务难以学习的问题。在多数文章中,任务被分成了2层,高层策略是去计划长时间的收益,而低层策略是为了直接与环境交互,达到高层策略所指定的目标。

分层强化学习也存在着3个重要的难点:

  • 怎么训练低层策略来感应语义存在不同的行为。

  • 怎么定义高层策略的动作

  • 怎么训练多个策略,在不过度收集数据的情况下。

HIRO

HIRO从两个方面回答了这些问题:

general:构建一个两层框架,上级策略学习宏观策略,而下层策略只是做一个监督学习,学习上层所给出的目标。

efficient:将之前所有的HIRO从on-policy 转换为off-policy 。但是转化为off-policy的时候,存在一个问题就是,上层策略和下层策略都在发生变化,上层策略训练之后,对于相同的场景会产生与经验不一样目标,这样下层的动作也就发生变化。所以off-policy的问题在这里。

所以这个地方提出了off-policy correction 来解决上面的问题。

学习训练算法 文章使用的是DDPG ,对于DDPG不熟悉的同学来说,可以去看看莫烦的视频。

off-policy corrections

为什么要有off-policy 矫正,off-policy存在一个问题,之前的经验拿到现在来进行训练,那么当时高层策略给出的目标,和现在高层策略给出的目标往往可能是不相同的。同样,对于相同的高层策略,假设其能给出同样的目标,过去的低层策略往往会做出和现在低层策略不一样的动作,这样就导致了环境给出的reward的变化,那么用这个reward去训练高层策略 往往是不准的。但是reward是改变不了的。
也就是说,当从过去的下层策略 和 当前的下层策略使用相同的目标时会发生的动作所导致的状态转移(以及reward)是不一样的,所以必须修正数据使其能恰好反应当前状态。

所以能改变的就是高层的动作,如果我们选择一个高层的动作,能够使得经验池中的已经得到低层动作的概率最大,就可以了
log ⁡ μ l o ( a t : t + c − 1 ∣ s t : t + c − 1 , g ~ t : t + c − 1 ) ∝ − 1 2 ∑ i = t t + c − 1 ∥ a i − μ l o ( s i , g ~ i ) ∥ 2 2 +  const.  \log \mu^{l o}\left(a_{t: t+c-1} | s_{t: t+c-1}, \tilde{g}_{t: t+c-1}\right) \propto-\frac{1}{2} \sum_{i=t}^{t+c-1}\left\|a_{i}-\mu^{l o}\left(s_{i}, \tilde{g}_{i}\right)\right\|_{2}^{2}+\text { const. } logμlo(at:t+c1st:t+c1,g~t:t+c1)21i=tt+c1aiμlo(si,g~i)22+ const. 
所以我们计算所有低层动作的概率,最后选择出来最大的来满足当前的结果。

正向传播

第一步 : 环境给出state

第二步: 更高层的策略观察状态产生一个动作或者目标,这个动作或者目标 可以通过自身策略产生 也可以通过转移方程产生。这一步主要是为了产生一个暂时的抽象目标,因为高层决策是没C步产生一次。

这里要明确的一点是,并不是每一步都产生一个高节目标,高阶目标每隔c步产生一次。在这C步之间的动作都是通过一个函数h产生。
h ( s t , g t , s t + 1 ) = s t + g t − s t + 1 h\left(s_{t}, g_{t}, s_{t+1}\right)=s_{t}+g_{t}-s_{t+1} h(st,gt,st+1)=st+gtst+1
第三步:低等级策略观察状态和目标产生一个动作,作用于环境。

第四步:环境根据低等级的动作 产生一个奖励,并转移到新的状态。 记录所有的数据。

反向传播

在这里插入图片描述

第一步: 从经验池收集数据

第二步:根据经验池的数据来生成每一步的奖励:
r ( s t , g t , a t , s t + 1 ) = − ∥ s t + g t − s t + 1 ∥ 2 r\left(s_{t}, g_{t}, a_{t}, s_{t+1}\right)=-\left\|s_{t}+g_{t}-s_{t+1}\right\|_{2} r(st,gt,at,st+1)=st+gtst+12
​ 并训练低层的网络。

第三步:off-policy 的动作矫正,改变高层的动作。

第四步:训练高层 利用 ( s t , g ~ t , ∑ R t : t + c − 1 , s t + c ) \left(s_{t}, \tilde{g}_{t}, \sum R_{t: t+c-1}, s_{t+c}\right) (st,g~t,Rt:t+c1,st+c), 这里也就是将从 s t s_t st s t + c s_{t+c} st+c 这一部分当作一条状态来进行学习。

总结

作者在Ant Gather、Ant Maze、Ant Push、Ant Fall 几个环境中验证了HIRO与Feudal Network和VIME,最后得到了算法效果远好于其他几个算法。

其实分层强化学习是不仅仅是解决复杂问题的,而且对于稀疏问题也是非常有帮助的,是非常好的发展方向,之后还会出关于这个方向的第二篇文章。

在模型无关的分层强化学习中,学习表示是一项重要的任务。学习表示是指通过提取有用的信息和特征来将观察数据转化为表示向量。这些表示向量可以用于解决强化学习问题中的决策和行动选择。 模型无关的分层强化学习是指不依赖于环境模型的强化学习方法。它通常由两个部分组成:低层控制策略和高层任务规划器。低层控制策略负责实际的行动选择和执行,而高层任务规划器则负责指导低层控制策略的决策过程。 学习表示在模型无关的分层强化学习中起到至关重要的作用。通过学习适当的表示,可以提高对观察数据的理解能力,使得模型能够捕捉到环境中的重要特征和结构。这些表示可以显著减少观察数据的维度,并提供更高层次的抽象,从而简化了决策和规划的过程。 学习表示的方法多种多样,包括基于深度学习的方法和基于特征选择的方法。基于深度学习的方法,如卷积神经网络和循环神经网络,可以通过学习多层次的特征表示来提取环境观察数据的有用信息。而基于特征选择的方法则通过选择最有信息量的特征来减少表示的维度,从而简化了模型的复杂度。 总之,学习表示在模型无关的分层强化学习中起到了至关重要的作用。通过学习适当的表示,模型可以更好地理解观察数据并进行决策和规划。不同的方法可以用来实现学习表示,包括基于深度学习的方法和基于特征选择的方法。这些方法的选择取决于具体任务和问题的需求。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值