1、安装所需的库
2、标注
3、生成标注图像
1、单文件json格式转化为png格式
(1)找到labelme安装目录中的Scripts,找到应用程序labelme_json_to_dataset.exe,将此应用程序复制到json文件所在目录
(2)进入anaconda命令行,进入labelme所在环境,cd到包含json文件和应用程序labelme_json_to_dataset.exe的文件夹所在目录,输入指令
labelme_json_to_dataset E:\jjj #包含json文件和应用程序labelme_json_to_dataset.exe的文件夹所处目录
即可得到一个文件夹,位于jjj文件夹所在目录,文件夹里有四个文件:
- img.png,源文件图像
- label.png,标签图像
- label_names.txt,标签中的各个类别的名称
- label_viz.png,源文件与标签融合文件
2、json格式批量转换为png格式
(1)找到labelme安装目录下Lib\site-packages\labelme\cli可以看到json_to_dataset.py文件,替换其中的代码(替换代码如下)。
import argparse
import json
import os
import os.path as osp
import warnings
import PIL.Image
import yaml
from labelme import utils
import base64
def main():
warnings.warn("This script is aimed to demonstrate how to convert the\n"
"JSON file to a single image dataset, and not to handle\n"
"multiple JSON files to generate a real-use dataset.")
parser = argparse.ArgumentParser()
parser.add_argument('json_file')
parser.add_argument('-o', '--out', default=None)
args = parser.parse_args()
json_file = args.json_file
if args.out is None:
out_dir = osp.basename(json_file).replace('.', '_')
out_dir = osp.join(osp.dirname(json_file), out_dir)
else:
out_dir = args.out
if not osp.exists(out_dir):
os.mkdir(out_dir)
count = os.listdir(json_file)
for i in range(0, len(count)):
path = os.path.join(json_file, count[i])
if os.path.isfile(path):
data = json.load(open(path))
if data['imageData']:
imageData = data['imageData']
else:
imagePath = os.path.join(os.path.dirname(path), data['imagePath'])
with open(imagePath, 'rb') as f:
imageData = f.read()
imageData = base64.b64encode(imageData).decode('utf-8')
img = utils.img_b64_to_arr(imageData)
label_name_to_value = {'_background_': 0}
for shape in data['shapes']:
label_name = shape['label']
if label_name in label_name_to_value:
label_value = label_name_to_value[label_name]
else:
label_value = len(label_name_to_value)
label_name_to_value[label_name] = label_value
# label_values must be dense
label_values, label_names = [], []
for ln, lv in sorted(label_name_to_value.items(), key=lambda x: x[1]):
label_values.append(lv)
label_names.append(ln)
assert label_values == list(range(len(label_values)))
lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value)
captions = ['{}: {}'.format(lv, ln)
for ln, lv in label_name_to_value.items()]
lbl_viz = utils.draw_label(lbl, img, captions)
out_dir = osp.basename(count[i]).replace('.', '_')
out_dir = osp.join(osp.dirname(count[i]), out_dir)
if not osp.exists(out_dir):
os.mkdir(out_dir)
PIL.Image.fromarray(img).save(osp.join(out_dir, 'img.png'))
#PIL.Image.fromarray(lbl).save(osp.join(out_dir, 'label.png'))
utils.lblsave(osp.join(out_dir, 'label.png'), lbl)
PIL.Image.fromarray(lbl_viz).save(osp.join(out_dir, 'label_viz.png'))
with open(osp.join(out_dir, 'label_names.txt'), 'w') as f:
for lbl_name in label_names:
f.write(lbl_name + '\n')
warnings.warn('info.yaml is being replaced by label_names.txt')
info = dict(label_names=label_names)
with open(osp.join(out_dir, 'info.yaml'), 'w') as f:
yaml.safe_dump(info, f, default_flow_style=False)
print('Saved to: %s' % out_dir)
if __name__ == '__main__':
main()
(2)进入labelme虚拟环境,cd到应用程序labelme_json_to_dataset.exe所处路径(Scripts目录下),输入指令
labelme_json_to_dataset.exe D:\workplace\labelme\c062~c066\json #json文件夹所处目录
即可得到转换文件,储存在Scripts目录内(labelme版本需要降低到3.16.2否则转换不成功,方法:uninstall原来版本,pip install labelme==3.16.2)。