【题目】
给你一个有根节点的二叉树,找到它最深的叶节点的最近公共祖先。
回想一下:
叶节点 是二叉树中没有子节点的节点
树的根节点的 深度 为 0,如果某一节点的深度为 d,那它的子节点的深度就是 d+1
如果我们假定 A 是一组节点 S 的 最近公共祖先,S 中的每个节点都在以 A 为根节点的子树中,且 A 的深度达到此条件下可能的最大值。
注意:本题与力扣 865 重复:https://leetcode-cn.com/problems/smallest-subtree-with-all-the-deepest-nodes/
示例 1:
输入:root = [3,5,1,6,2,0,8,null,null,7,4]
输出:[2,7,4]
解释:
我们返回值为 2 的节点,在图中用黄色标记。
在图中用蓝色标记的是树的最深的节点。
注意,节点 6、0 和 8 也是叶节点,但是它们的深度是 2 ,而节点 7 和 4 的深度是 3 。
示例 2:
输入:root = [1]
输出:[1]
解释:根节点是树中最深的节点,它是它本身的最近公共祖先。
示例 3:
输入:root = [0,1,3,null,2]
输出:[2]
解释:树中最深的叶节点是 2 ,最近公共祖先是它自己。
提示:
给你的树中将有 1 到 1000 个节点。
树中每个节点的值都在 1 到 1000 之间。
每个节点的值都是独一无二的。
【代码】
class Solution:
def dfs(self,root,fa,dep):
if not root:
return
if fa:
self.fa[root]=fa
if dep>len(self.level):
self.level.append([root])
else:
self.level[dep-1].append(root)
self.dfs(root.left,root,dep+1)
self.dfs(root.right,root,dep+1)
def lcaDeepestLeaves(self, root: TreeNode) -> TreeNode:
self.fa=dict()
self.fa[root]=None
self.level=[]
self.dfs(root,None,1)
deepest=self.level[-1]
paths=[]
deepest_index=-1
if len(deepest)==1:
return deepest[0]
node=deepest[0]
while node:
paths.append(node)
node=self.fa[node]
deepest.pop(0)
for node in deepest:
i=0
while node:
if node==paths[i]:
deepest_index=max(deepest_index,i)
break
node=self.fa[node]
i+=1
return paths[deepest_index]
【方法2】
class Solution:
def depth(self,root):
if not root:
return 0
return max(self.depth(root.left),self.depth(root.right))+1
def lcaDeepestLeaves(self, root: TreeNode) -> TreeNode:
if not root:
return root
L=self.depth(root.left)
R=self.depth(root.right)
if L==R:
return root
elif L>R:
return self.lcaDeepestLeaves(root.left)
else:
return self.lcaDeepestLeaves(root.right)