泛函分析笔记(十七) 弱偏导数

1. L l o c 1 ( Ω ) L_{loc}^1(\Omega) Lloc1(Ω) 中的弱偏导数

1.1. L l o c 1 ( Ω ) L_{loc}^1(\Omega) Lloc1(Ω) 的定义

Ω \Omega Ω R N \mathbb{R}^N RN 的开子集,以 D ( Ω ) \mathcal{D}(\Omega) D(Ω) 表示所有 ϕ : Ω → R \phi:\Omega\to\mathbb{R} ϕ:ΩR 的无穷阶可微函数,其支集 s u p p     ϕ supp ~~~ \phi supp   ϕ Ω \Omega Ω 的紧子集组成的空间。
那么, L l o c 1 ( Ω ) L_{loc}^1(\Omega) Lloc1(Ω) 表示 所有这样的可测函数 v : Ω → R v:\Omega\to\mathbb{R} v:ΩR Ω \Omega Ω 中任一紧子集 K K K,其 在K的限制 v ∣ K ∈ L 1 ( K ) v|_{K}\in L^1(K) vKL1(K) 组成的 空间

  • Ω \Omega Ω R N \mathbb{R}^N RN 的开子集, m ≥ 1 m\ge 1 m1 是整数,而函数 u ∈ C m ( Ω ) u\in\mathcal{C}^m(\Omega) uCm(Ω) 是给定的,则
    ∫ Ω ( ∂ α v ) ϕ d x = ( − 1 ) ∣ α ∣ ∫ Ω v ∂ α ϕ d x ,       ∀ ϕ ∈ D ( Ω ) \int_\Omega (\partial^\alpha v)\phi dx = (-1)^{|\alpha|}\int_\Omega v\partial^\alpha \phi dx,~~~~~\forall \phi \in \mathcal{D}(\Omega) Ω(αv)ϕdx=(1)αΩvαϕdx,     ϕD(Ω)
    对每个阶数 ∣ α ∣ ≤ m |\alpha|\le m αm 的重指标 α \alpha α 成立。

  • 变分学的基本引理: Ω \Omega Ω R N \mathbb{R}^N RN 的开子集,若一函数 v ∈ L l o c 1 ( Ω ) v\in L_{loc}^1(\Omega) vLloc1(Ω) 使得 ∫ Ω v ϕ d x = 0 ,    ∀ ϕ ∈ Ω \int_{\Omega} v\phi dx = 0,~~\forall \phi \in \mathcal{\Omega} Ωvϕdx=0,  ϕΩ ,则v=0

啥意思呢,这个 D \mathcal{D} D 刚才说了是一大堆的无穷阶可微函数,那么如果我一个函数和所有的无穷阶可微函数的乘积的积分都是0,那么我这个函数只能是0函数。

1.2. 弱偏导数

给定函数 v ∈ L l o c 1 ( Ω ) v\in L_{loc}^1(\Omega) vLloc1(Ω) ,如果

∫ Ω v i ϕ d x = − ∫ Ω v ∂ i ϕ d x , ∀ ϕ ∈ D ( Ω ) \int_\Omega v_i\phi dx = -\int _\Omega v\partial_i \phi dx, \forall \phi\in\mathcal{D}(\Omega) Ωviϕdx=Ωviϕdx,ϕD(Ω)

一个函数 v i ∈ L l o c 1 ( Ω ) v_i\in L_{loc}^1(\Omega) viLloc1(Ω) 是v在 L l o c 1 ( Ω ) L_{loc}^1(\Omega) Lloc1(Ω) 中关于第i个变量的一阶弱偏导数。

好像和分部积分差不多吼!!

1.3. 弱偏导数的性质

  • Ω \Omega Ω R N \mathbb{R}^N RN 的开子集,给定函数 v ∈ L l o c 1 ( Ω ) v\in L_{loc}^1(\Omega) vLloc1(Ω) 以及重指标 α , ∣ α ∣ ≥ 1 \alpha,|\alpha|\ge 1 α,α1 ,设函数 v α ∈ L l o c 1 ( Ω ) v^\alpha\in L_{loc}^1(\Omega) vαLloc1(Ω) 是v的 ∣ α ∣ |\alpha| α 阶弱偏导数,即满足
    ∫ Ω v α ϕ d x = ( − 1 ) ∣ α ∣ ∫ Ω v ∂ α ϕ d x \int_\Omega v^\alpha \phi dx = (-1)^{|\alpha|}\int_{\Omega} v\partial ^\alpha \phi dx Ωvαϕdx=(1)αΩvαϕdx
    则这个弱偏导数是唯一的,并且如果 v ∈ C ∣ α ∣ ( Ω ) v\in\mathcal{C}^{|\alpha|}(\Omega) vCα(Ω) ,则 v α = ∂ α v v^\alpha=\partial^\alpha v vα=αv

证明


v α ∈ L l o c 1 ( Ω ) v^\alpha \in L_{loc}^1(\Omega) vαLloc1(Ω) ω α ∈ L l o c 1 ( Ω ) \omega^\alpha \in L_{loc}^1(\Omega) ωαLloc1(Ω) 使得
∫ Ω v α ϕ d x = ( − 1 ) ∣ α ∣ ∫ α v ∂ α ϕ d x = ∫ Ω ω α ϕ d x , ∀ ϕ ∈ D ( Ω ) \int_{\Omega}v^\alpha \phi dx = (-1)^{|\alpha|}\int_{\alpha} v\partial^\alpha \phi dx = \int_{\Omega}\omega^\alpha \phi dx,\forall \phi \in \mathcal{D}(\Omega) Ωvαϕdx=(1)ααvαϕdx=Ωωαϕdx,ϕD(Ω)
所以说就是 α \alpha α 阶的弱偏导嘛。

变分学的基本引理得到 v α = ω α v^\alpha = \omega^\alpha vα=ωα
我觉得应该是通过
∫ Ω v α ϕ d x − ∫ Ω ω α ϕ d x = ∫ Ω ( v α − ω α ) ϕ d x = 0 \int_{\Omega}v^\alpha \phi dx - \int_{\Omega}\omega^\alpha \phi dx = \int_{\Omega}(v^\alpha -\omega^\alpha)\phi dx=0 ΩvαϕdxΩωαϕdx=Ω(vαωα)ϕdx=0
得到 ( v α − ω α ) = 0 (v^\alpha -\omega^\alpha) = 0 (vαωα)=0 这样推过来的。


然后因为 v ∈ C ∣ α ∣ ( Ω ) v\in\mathcal{C}^{|\alpha|}(\Omega) vCα(Ω) ,有

∫ Ω ( ∂ α v ) ϕ d x = ( − 1 ) ∣ α ∣ ∫ Ω v ∂ α ϕ d x = ∫ Ω v α ϕ d x \int_\Omega(\partial^\alpha v)\phi dx = (-1)^{|\alpha|}\int_{\Omega} v\partial^\alpha \phi dx = \int_\Omega v^\alpha \phi dx Ω(αv)ϕdx=(1)αΩvαϕdx=Ωvαϕdx

同理有 v α = ∂ α v v^\alpha = \partial^\alpha v vα=αv


OK证明完成。

  • ∫ Ω v ∂ i ϕ d x = 0 , ∀ ϕ ∈ D , 1 ≤ i ≤ N \int_{\Omega}v\partial_i\phi dx =0,\forall \phi \in \mathcal{D},1\le i\le N Ωviϕdx=0,ϕD,1iN ,则v的所有一阶弱偏导数在 L l o c 1 ( Ω ) L_{loc}^1(\Omega) Lloc1(Ω) 中为0.
    换句话讲,若 Ω \Omega Ω R N \mathbb{R}^N RN 中的连通开子集,而函数 v ∈ L l o c 1 ( Ω ) v\in L_{loc}^1(\Omega) vLloc1(Ω) 使得
    ∫ Ω v ∂ i ϕ d x = 0 , ∀ ϕ ∈ D , 1 ≤ i ≤ N \int_{\Omega}v\partial_i\phi dx =0,\forall \phi \in \mathcal{D},1\le i\le N Ωviϕdx=0,ϕD,1iN
    v v v 是一个常函数

啊这,就是对每一个变量函数都不变了呗,那就是常函数了。

证明


只需证明函数在 Ω \Omega Ω 中是局部函数

给定任一点 x ∈ Ω , ∃ r > 0 , U ‾ ⊂ Ω x\in \Omega,\exists r>0, \overline U \subset \Omega xΩ,r>0,UΩ ,其中 U : = B ( x ; r ) U:=B(x;r) U:=B(x;r) ,然后设 ( v ϵ ) ϵ > 0 (v_\epsilon)_{\epsilon > 0} (vϵ)ϵ>0 是给定函数 v ∈ L l o c 1 ( Ω ) v\in L_{loc}^1(\Omega) vLloc1(Ω) 的正则化族,则存在 ϵ 1 = ϵ 1 ( U ) > 0 \epsilon_1 = \epsilon_1(U) > 0 ϵ1=ϵ1(U)>0 使得对所有的 0 < ϵ ≤ ϵ 1 0<\epsilon\le \epsilon_1 0<ϵϵ1

U ‾ ⊂ Ω ϵ : = x ∈ Ω ; d i s t ( x , R N − Ω ) > ϵ , v ϵ ∈ D ( Ω ϵ ) , ∣ ∣ v ϵ − v ∣ ∣ L 1 ( U ) → ϵ → 0 0 \overline U \subset \Omega_\epsilon := {x\in\Omega;dist(x,\mathbb{R}^N - \Omega)>\epsilon}, v_\epsilon \in D(\Omega_\epsilon), ||v_\epsilon - v||_{L^1(U)} \xrightarrow[\epsilon\to 0]{} 0 UΩϵ:=xΩ;dist(x,RNΩ)>ϵ,vϵD(Ωϵ),vϵvL1(U) ϵ00

∂ i v ϵ ( x ) = ∫ Ω ∂ i ω ϵ ( x − y ) v ( y ) d y , ∀ x ∈ Ω ϵ , 1 ≤ i ≤ N \partial_i v_\epsilon (x) = \int_{\Omega} \partial_i \omega_\epsilon (x-y) v(y)dy,\forall x\in\Omega_\epsilon , 1\le i \le N ivϵ(x)=Ωiωϵ(xy)v(y)dy,xΩϵ,1iN

由于对每个 x ∈ Ω ϵ x\in\Omega_\epsilon xΩϵ ,每个函数 y ∈ Ω → ∂ i ω ϵ ( x − y ) , 1 ≤ i ≤ N y\in\Omega\to\partial_i\omega_\epsilon (x-y),1\le i\le N yΩiωϵ(xy),1iN 都属于空间 D ( Ω ) \mathcal{D}(\Omega) D(Ω) ,对函数 v 所做的假定意味着对所有的 0 < ϵ ≤ ϵ 1 0<\epsilon\le \epsilon_1 0<ϵϵ1 成立

∂ i v ϵ ( x ) = 0 , ∀ x ∈ B ( x ; r ) , 1 ≤ i ≤ N \partial_i v_\epsilon (x) =0,\forall x\in B(x;r),1\le i \le N ivϵ(x)=0,xB(x;r),1iN


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

豆沙粽子好吃嘛!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值