1. L l o c 1 ( Ω ) L_{loc}^1(\Omega) Lloc1(Ω) 中的弱偏导数
1.1. L l o c 1 ( Ω ) L_{loc}^1(\Omega) Lloc1(Ω) 的定义
设
Ω
\Omega
Ω 是
R
N
\mathbb{R}^N
RN 的开子集,以
D
(
Ω
)
\mathcal{D}(\Omega)
D(Ω) 表示所有
ϕ
:
Ω
→
R
\phi:\Omega\to\mathbb{R}
ϕ:Ω→R 的无穷阶可微函数,其支集
s
u
p
p
ϕ
supp ~~~ \phi
supp ϕ 是
Ω
\Omega
Ω 的紧子集组成的空间。
那么,
L
l
o
c
1
(
Ω
)
L_{loc}^1(\Omega)
Lloc1(Ω) 表示 所有这样的可测函数
v
:
Ω
→
R
v:\Omega\to\mathbb{R}
v:Ω→R 对
Ω
\Omega
Ω 中任一紧子集
K
K
K,其 在K的限制
v
∣
K
∈
L
1
(
K
)
v|_{K}\in L^1(K)
v∣K∈L1(K) 组成的 空间 。
-
设 Ω \Omega Ω 是 R N \mathbb{R}^N RN 的开子集, m ≥ 1 m\ge 1 m≥1 是整数,而函数 u ∈ C m ( Ω ) u\in\mathcal{C}^m(\Omega) u∈Cm(Ω) 是给定的,则
∫ Ω ( ∂ α v ) ϕ d x = ( − 1 ) ∣ α ∣ ∫ Ω v ∂ α ϕ d x , ∀ ϕ ∈ D ( Ω ) \int_\Omega (\partial^\alpha v)\phi dx = (-1)^{|\alpha|}\int_\Omega v\partial^\alpha \phi dx,~~~~~\forall \phi \in \mathcal{D}(\Omega) ∫Ω(∂αv)ϕdx=(−1)∣α∣∫Ωv∂αϕdx, ∀ϕ∈D(Ω)
对每个阶数 ∣ α ∣ ≤ m |\alpha|\le m ∣α∣≤m 的重指标 α \alpha α 成立。 -
变分学的基本引理: 设 Ω \Omega Ω 是 R N \mathbb{R}^N RN 的开子集,若一函数 v ∈ L l o c 1 ( Ω ) v\in L_{loc}^1(\Omega) v∈Lloc1(Ω) 使得 ∫ Ω v ϕ d x = 0 , ∀ ϕ ∈ Ω \int_{\Omega} v\phi dx = 0,~~\forall \phi \in \mathcal{\Omega} ∫Ωvϕdx=0, ∀ϕ∈Ω ,则v=0
啥意思呢,这个 D \mathcal{D} D 刚才说了是一大堆的无穷阶可微函数,那么如果我一个函数和所有的无穷阶可微函数的乘积的积分都是0,那么我这个函数只能是0函数。
1.2. 弱偏导数
给定函数 v ∈ L l o c 1 ( Ω ) v\in L_{loc}^1(\Omega) v∈Lloc1(Ω) ,如果
∫ Ω v i ϕ d x = − ∫ Ω v ∂ i ϕ d x , ∀ ϕ ∈ D ( Ω ) \int_\Omega v_i\phi dx = -\int _\Omega v\partial_i \phi dx, \forall \phi\in\mathcal{D}(\Omega) ∫Ωviϕdx=−∫Ωv∂iϕdx,∀ϕ∈D(Ω)
一个函数 v i ∈ L l o c 1 ( Ω ) v_i\in L_{loc}^1(\Omega) vi∈Lloc1(Ω) 是v在 L l o c 1 ( Ω ) L_{loc}^1(\Omega) Lloc1(Ω) 中关于第i个变量的一阶弱偏导数。
好像和分部积分差不多吼!!
1.3. 弱偏导数的性质
- 设
Ω
\Omega
Ω 是
R
N
\mathbb{R}^N
RN 的开子集,给定函数
v
∈
L
l
o
c
1
(
Ω
)
v\in L_{loc}^1(\Omega)
v∈Lloc1(Ω) 以及重指标
α
,
∣
α
∣
≥
1
\alpha,|\alpha|\ge 1
α,∣α∣≥1 ,设函数
v
α
∈
L
l
o
c
1
(
Ω
)
v^\alpha\in L_{loc}^1(\Omega)
vα∈Lloc1(Ω) 是v的
∣
α
∣
|\alpha|
∣α∣ 阶弱偏导数,即满足
∫ Ω v α ϕ d x = ( − 1 ) ∣ α ∣ ∫ Ω v ∂ α ϕ d x \int_\Omega v^\alpha \phi dx = (-1)^{|\alpha|}\int_{\Omega} v\partial ^\alpha \phi dx ∫Ωvαϕdx=(−1)∣α∣∫Ωv∂αϕdx
则这个弱偏导数是唯一的,并且如果 v ∈ C ∣ α ∣ ( Ω ) v\in\mathcal{C}^{|\alpha|}(\Omega) v∈C∣α∣(Ω) ,则 v α = ∂ α v v^\alpha=\partial^\alpha v vα=∂αv
证明
设
v
α
∈
L
l
o
c
1
(
Ω
)
v^\alpha \in L_{loc}^1(\Omega)
vα∈Lloc1(Ω) 及
ω
α
∈
L
l
o
c
1
(
Ω
)
\omega^\alpha \in L_{loc}^1(\Omega)
ωα∈Lloc1(Ω) 使得
∫
Ω
v
α
ϕ
d
x
=
(
−
1
)
∣
α
∣
∫
α
v
∂
α
ϕ
d
x
=
∫
Ω
ω
α
ϕ
d
x
,
∀
ϕ
∈
D
(
Ω
)
\int_{\Omega}v^\alpha \phi dx = (-1)^{|\alpha|}\int_{\alpha} v\partial^\alpha \phi dx = \int_{\Omega}\omega^\alpha \phi dx,\forall \phi \in \mathcal{D}(\Omega)
∫Ωvαϕdx=(−1)∣α∣∫αv∂αϕdx=∫Ωωαϕdx,∀ϕ∈D(Ω)
所以说就是
α
\alpha
α 阶的弱偏导嘛。
由变分学的基本引理得到
v
α
=
ω
α
v^\alpha = \omega^\alpha
vα=ωα
我觉得应该是通过
∫
Ω
v
α
ϕ
d
x
−
∫
Ω
ω
α
ϕ
d
x
=
∫
Ω
(
v
α
−
ω
α
)
ϕ
d
x
=
0
\int_{\Omega}v^\alpha \phi dx - \int_{\Omega}\omega^\alpha \phi dx = \int_{\Omega}(v^\alpha -\omega^\alpha)\phi dx=0
∫Ωvαϕdx−∫Ωωαϕdx=∫Ω(vα−ωα)ϕdx=0
得到
(
v
α
−
ω
α
)
=
0
(v^\alpha -\omega^\alpha) = 0
(vα−ωα)=0 这样推过来的。
然后因为 v ∈ C ∣ α ∣ ( Ω ) v\in\mathcal{C}^{|\alpha|}(\Omega) v∈C∣α∣(Ω) ,有
∫ Ω ( ∂ α v ) ϕ d x = ( − 1 ) ∣ α ∣ ∫ Ω v ∂ α ϕ d x = ∫ Ω v α ϕ d x \int_\Omega(\partial^\alpha v)\phi dx = (-1)^{|\alpha|}\int_{\Omega} v\partial^\alpha \phi dx = \int_\Omega v^\alpha \phi dx ∫Ω(∂αv)ϕdx=(−1)∣α∣∫Ωv∂αϕdx=∫Ωvαϕdx
同理有 v α = ∂ α v v^\alpha = \partial^\alpha v vα=∂αv
OK证明完成。
- 若
∫
Ω
v
∂
i
ϕ
d
x
=
0
,
∀
ϕ
∈
D
,
1
≤
i
≤
N
\int_{\Omega}v\partial_i\phi dx =0,\forall \phi \in \mathcal{D},1\le i\le N
∫Ωv∂iϕdx=0,∀ϕ∈D,1≤i≤N ,则v的所有一阶弱偏导数在
L
l
o
c
1
(
Ω
)
L_{loc}^1(\Omega)
Lloc1(Ω) 中为0.
换句话讲,若 Ω \Omega Ω 是 R N \mathbb{R}^N RN 中的连通开子集,而函数 v ∈ L l o c 1 ( Ω ) v\in L_{loc}^1(\Omega) v∈Lloc1(Ω) 使得
∫ Ω v ∂ i ϕ d x = 0 , ∀ ϕ ∈ D , 1 ≤ i ≤ N \int_{\Omega}v\partial_i\phi dx =0,\forall \phi \in \mathcal{D},1\le i\le N ∫Ωv∂iϕdx=0,∀ϕ∈D,1≤i≤N
则 v v v 是一个常函数
啊这,就是对每一个变量函数都不变了呗,那就是常函数了。
证明
只需证明函数在 Ω \Omega Ω 中是局部函数
给定任一点 x ∈ Ω , ∃ r > 0 , U ‾ ⊂ Ω x\in \Omega,\exists r>0, \overline U \subset \Omega x∈Ω,∃r>0,U⊂Ω ,其中 U : = B ( x ; r ) U:=B(x;r) U:=B(x;r) ,然后设 ( v ϵ ) ϵ > 0 (v_\epsilon)_{\epsilon > 0} (vϵ)ϵ>0 是给定函数 v ∈ L l o c 1 ( Ω ) v\in L_{loc}^1(\Omega) v∈Lloc1(Ω) 的正则化族,则存在 ϵ 1 = ϵ 1 ( U ) > 0 \epsilon_1 = \epsilon_1(U) > 0 ϵ1=ϵ1(U)>0 使得对所有的 0 < ϵ ≤ ϵ 1 0<\epsilon\le \epsilon_1 0<ϵ≤ϵ1
U ‾ ⊂ Ω ϵ : = x ∈ Ω ; d i s t ( x , R N − Ω ) > ϵ , v ϵ ∈ D ( Ω ϵ ) , ∣ ∣ v ϵ − v ∣ ∣ L 1 ( U ) → ϵ → 0 0 \overline U \subset \Omega_\epsilon := {x\in\Omega;dist(x,\mathbb{R}^N - \Omega)>\epsilon}, v_\epsilon \in D(\Omega_\epsilon), ||v_\epsilon - v||_{L^1(U)} \xrightarrow[\epsilon\to 0]{} 0 U⊂Ωϵ:=x∈Ω;dist(x,RN−Ω)>ϵ,vϵ∈D(Ωϵ),∣∣vϵ−v∣∣L1(U)ϵ→00
∂ i v ϵ ( x ) = ∫ Ω ∂ i ω ϵ ( x − y ) v ( y ) d y , ∀ x ∈ Ω ϵ , 1 ≤ i ≤ N \partial_i v_\epsilon (x) = \int_{\Omega} \partial_i \omega_\epsilon (x-y) v(y)dy,\forall x\in\Omega_\epsilon , 1\le i \le N ∂ivϵ(x)=∫Ω∂iωϵ(x−y)v(y)dy,∀x∈Ωϵ,1≤i≤N
由于对每个 x ∈ Ω ϵ x\in\Omega_\epsilon x∈Ωϵ ,每个函数 y ∈ Ω → ∂ i ω ϵ ( x − y ) , 1 ≤ i ≤ N y\in\Omega\to\partial_i\omega_\epsilon (x-y),1\le i\le N y∈Ω→∂iωϵ(x−y),1≤i≤N 都属于空间 D ( Ω ) \mathcal{D}(\Omega) D(Ω) ,对函数 v 所做的假定意味着对所有的 0 < ϵ ≤ ϵ 1 0<\epsilon\le \epsilon_1 0<ϵ≤ϵ1 成立
∂ i v ϵ ( x ) = 0 , ∀ x ∈ B ( x ; r ) , 1 ≤ i ≤ N \partial_i v_\epsilon (x) =0,\forall x\in B(x;r),1\le i \le N ∂ivϵ(x)=0,∀x∈B(x;r),1≤i≤N