一、 MCP是什么?
MCP全称模型上下文协议(Model Context Protocol),是由 Anthropic (Claude 模型的主体公司)在 2024 年 11 月 推出并开源的一项创新标准,旨在让大语言模型能够无缝连接至第三方的数据源。
该协议支持对接 内容存储库、业务工具、开发环境 等多种外部服务,从而赋能 AI 大模型获取更丰富的上下文信息,生成更加精准、相关且智能的回答。
MCP 就像转接头,统一不同服务供所有人使用
MCP 就像一个“转接头”或“通用插座”,它的核心作用是统一不同外部服务(如 Google Drive、GitHub、Slack、本地文件系统等),通过标准化接口与 AI 模型对接。
这样,开发者只需基于 MCP 规范开发一次“接口适配器”(MCP 服务器),就能让所有兼容 MCP 的模型(MCP 客户端)无缝接入,无需针对每个模型单独适配,大幅提升兼容性与开发效率。
MCP 里面还包含 SSE(Server-Sent Events),是一种允许服务器向浏览器推送实时更新的技术。
为AI模型量身定制的“USB-C接口”
可以标准化地连接AI系统与各类外部工具和数据源
传统的 API 就像不同的门和钥匙
每扇门都需要自己的钥匙和特定的规则
MCP与传统API关键区别:
- 单一协议: MCP像一个统一接口,只要一次整合,就能连接多个服务。
- 动态发现: AI模型能自动识别并使用可用的工具,不用提前写死每个接口。
- 双向通信: MCP支持类似WebSockets的实时双向通信,模型不仅能查询数据,还能主动触发操作。
LLM 也不是万能的,它缺失了很多能力,LLM 可以作为智能体的大脑,外部工具就是智能体的手和脚,协助智能体执行决策。一个典型的 Agent 的设计,LLM 充当大脑模块,通过多模态输入,处理信息,然后做出决策和规划行动。
MCP 就是想要通过一个开放的协议,为外部工具(或数据源)提供统一和 LLM 交互的统一集成,MCP 就是手脚连接身体的“关节”。
二、 MCP能做什么?
1、API集成
- 通过联网搜索向 AI 提供最新信息
常见的 AI 助手采用通过联网搜索获取实时信息。当用户开启联网搜索时,助手先将用户的请求发送至搜索引擎,再将返回内容与用户输入一起提供给大模型,最终生成回答。搜索引擎在此作为实时信息源,为大语言模型提供额外的上下文。
- 通过 API 向 AI 提供自有系统数据
如果希望 AI 能提供行业内部信息、或者研发的自有系统内的信息, AI 联网搜索的效果就很不好,甚至无法实现。用户可以自行搭建 AI 代理,将自有系统的数据通过 API 的形式接入 AI 助手, 为大语言模型补充提供丰富的上下文信息。
- 通过 MCP 服务器向 AI 提供上下文信息
MCP 协议解决了 AI 大模型与数据源集成碎片化的问题,提供统一标准,让开发者无需为每个数据源和 AI 助手单独开发连接器。 通过 MCP,数据源和 AI 工具可建立安全双向连接, 使 AI 在不同工具和数据集间流畅协作,实现更可持续的架构。
三、Blender MCP
一句话提示,Claude自动化打开Blender将2D图片转为3D建模。而且还能只用一次提示词,再基于这个场景搭建可以互动的网页。
还有直接通过口喷需求对话的方式快速去构建一个用 blender 渲染好的飞机…
四、MCP 服务市场
市面上目前也有越来越多的能力被挖掘出来,并被统一、分类,由不同的数据源和工具控制和供给,以便于用户快速的安装调用。
https://github.com/modelcontextprotocol/servers
飞书文档中还有非常多比较不错的集成综合工具站可以去看看
五、 一起来动手实践!
vscode下载地址:https://code.visualstudio.com/
扩展里面搜索:cline
1、将设计稿转成前端代码
Figma to html MCP 实战,仅需贴入一个链接给大模型,就可以将 figma 中的设计稿界面快速的变成在线可以预览的网页。
- 安装 MCP
使用的是 Figma-Context-MCP 框架,在本地启动服务后再进行信息注册。
https://github.com/GLips/Figma-Context-MCP#configuration
使用 JSON 结构进行注册,同时获取 Figma 的 API Key
- 复制 Figma 稿件地址
(原稿件样例↑)
贴入 figma 稿件地址后,等待效果生成
- 生成预览前端代码
当然,MCP 服务也没有那么“神”,其实是做了一个编辑器的中间转换器,能够支持编辑和读取 figma 内的相关数据。
在这个场景中的 MCP 相当于是对 Figma 的数据上下文结构信息进行读取,结构化设计能力还是依赖于底层模型 Claude,还是会出现布局混乱的现象,在实际用途上是更方便的取数了。
Figma 的 MCP 文件读取,可以看到实际上是读取了 Figma 的文件 Dom 结构信息。
使用图片下载的 MCP 能力,对页面结构中的图片进行填充。
2、生成 AI 新闻资讯卡片
主要是实现一句话联网搜索相关信息后,参考相关的样式图进行页面填充,但是看起来也并不稳定,底层还是依赖于 Claude 的能力。
-
获取最新的新闻数据
-
参考 Figma 样式
- 给予对应的 Figma 样式参考链接
- 生成最后的效果
六、 MCP客户端工具
注意,很多模型是不能直接支持MCP服务的,因为模型本身没有办法去识别插件的能力(类似之前的function calling)也需要去对不同的工具去识别,在这里推荐开源的模型就是Qwen-max。
Cherry Studio,支持了SSE(类似https接口形式)和npx的安装方式。
当然必须给他点个赞,还是个开源项目:
https://github.com/CherryHQ/cherry-studio
安装完cherry studio后,除了配置基础的模型服务,我们主要在设置中去配置MCP服务器,同时我们应该先把UV/Bun进行一键安装依赖,然后点击添加服务器。
以idoubi大佬的mcp服务市场对接为例:https://mcp.so/
- SSE注册方法:
直接拿到SSE的URL即可,就可以在cherry stuido中选择以“SSE”的结构导入。
- npx注册方法:
点击“编辑JSON”按钮,选择“STDIO”选项的结构,将下面的json结构文件中的正文部分内容进行贴入。
{
"mcpServers": {
"sequential-thinking": {
"command": "npx",
"args": [
"-y",
"@modelcontextprotocol/server-sequential-thinking"
]
}
}
}
配置好后点击“启用”按钮。
需要选择能够支持MCP的模型后,启用MCP服务。
可以看到MCP服务已经调用成功了。
MCP的出现,可以说是人工智能发展路上的一个重要标志。
它不再是被动的“回答者”,而是主动的“协作者”。不仅改变了技术的边界,也悄然重塑了我们与世界的互动方式。
虽然 MCP 技术本身可能看起来复杂,但它的核心思想——“连接和整合”——是非常直观且实用的。
通过了解 MCP 的基本原理,普通人也能更好地利用基于 MCP 的工具和服务来提升自己的工作效率。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。