以下是2025年医疗大模型研究报告的核心分析,聚焦新质生产力大模型在医疗场景的赋能实践:
一、发展现状与市场规模
- 行业阶段与增速
- 医疗大模型处于商业化早期,已完成“产品打造”阶段,当前亟需通过性能验证释放价值。
- 市场规模预计2028年突破百亿元,2025年渗透率不足10%-20%,属蓝海市场。
- 产品爆发与技术覆盖
2025年医疗大模型发布数量达288个,远超2023年(61个)和2024年(94个),90%覆盖政策倡导场景。
- 文本类、影像类、生物类及中医类大模型差异化发展,影像类成熟度最高,中医类增速显著。
二、核心应用场景
- 院内场景主导
- 医疗服务环节占比最高(53%),核心应用包括临床专病辅助决策、预问诊、病历生成、影像诊断。
- 影像类大模型已覆盖疾病筛查、诊断、治疗全周期,超声与病理领域进展突出。
- 院外场景扩展
- 药物研发:生物大模型缩短研发周期,但需进一步技术突破;
健康管理:C端个性化服务从轻量级咨询向治疗级干预延伸。
- 细分领域创新
- 中医大模型融合古籍文献与现代医学数据,加速辨证论治数字化;
医疗IT场景中,文本类大模型渗透率达46%,优化流程管理效率。
三、商业化路径与挑战
- 关键制约因素
- 商业化需突破“五大关卡”:痛点验证(想用)、市场规模测算(想做)、技术能力评估(能做)、性能验证(好用)、政策合规(允许用)。
- 落地模式
- 院内严肃医疗场景中,影像辅助诊断已实现商业化突破(如放射影像领域);
- 院外场景通过“工具→价值”模式转化,例如药物研发企业采用大模型降低研发门槛。
四、未来趋势展望
- 技术协同与普惠化
- 大小模型协作成主流,大模型作为基座驱动小模型场景化落地;
- 研发成本下降推动技术普惠,基层医疗机构加速接入。
- 数据驱动竞争壁垒
- 高质量医疗数据积累与治理能力成为核心竞争力;
- 多模态大模型(如数坤科技医疗大脑)构建数智化医院生态。
五、典型企业案例
- 讯飞医疗:以基层医疗为切入点,构建覆盖全产业链的大模型体系;
数坤科技:多模态大模型实现“筛-诊-治”全流程赋能,落地超3000家医院。
广告
视频加载失败,请刷新页面再试
错误码:44[ 刷新](javascript:void(0)😉
寒夜尽处是卿心
爱情/家庭/权谋 81集
去观看
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。