大语言模型(LLM)面试前50常见问题英中对照版(附PDF下载)

Top 50 LLM Interview Questions(大语言模型面试前50常见问题),作者Hao Hoang,我们用大模型翻译了这份文档并提供英中对照版

图片

图片

图片

图片

图片

图片

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

### 大语言模型常见问题及解答 #### 什么是Seq2Seq模型? Seq2Seq模型是一种将一个序列映射到另一个序列的模型,广泛应用于机器翻译、对话生成等领域。例如,在语到法语的翻译任务中,输入是一个语句子序列,而输出则是对应的法语句子序列[^2]。 #### AI大模型的学习路径是什么样的? AI大模型的学习路径可以分为多个阶段,其中第七阶段主要关注于大模型平台的应用与开发。这一阶段的重点在于利用成熟的大型预训练模型(如星火大模型、文心一言等),构建适用于特定行业的解决方案。此外,还有丰富的配套资源可供学习者参考,包括但不限于100套AI大模型商业化落地方案、100集大模型视频教程以及200本大模型PDF书籍[^1]。 #### LLM面试的核心考察点有哪些? 在针对LLMLarge Language Models)的面试过程中,通常会涉及以下几个方面的问题: - **技术原理**:例如Transformer架构的工作机制及其改进本(如GPT系列)。 - **应用场景**:如何基于现有开源或闭源的大规模语言模型设计实际业务场景中的产品功能。 - **性能优化**:讨论关于提升推理速度、降低内存消耗等方面的技术手段。 这些内容都可以从专门整理好的LLM面试题合集中获取更详细的指导材料[^3]。 #### 如何评估一个大语言模型的表现? 评价指标可能包含准确性(Accuracy)、流畅度(Fluency Score)、相关性(Relatedness Measure),同时也需考虑计算成本等因素来综合判断其优劣之处。具体方法可参照各类公开评测标准或者企业内部定义的关键绩效指数(KPIs)。 --- ### 示例代码展示 以下是实现简单Seq2Seq框架的一个Python伪代码片段: ```python import tensorflow as tf class Encoder(tf.keras.Model): def __init__(self, vocab_size, embedding_dim, enc_units): super(Encoder, self).__init__() ... def call(self, x, hidden): ... class Decoder(tf.keras.Model): def __init__(self, vocab_size, embedding_dim, dec_units): super(Decoder, self).__init__() ... def call(self, x, hidden, enc_output): ... encoder = Encoder(vocab_inp_size, embedding_dim, units) decoder = Decoder(vocab_tar_size, embedding_dim, units) optimizer = tf.keras.optimizers.Adam() loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction='none') @tf.function def train_step(inp, targ, enc_hidden): loss = 0 with tf.GradientTape() as tape: ... ``` 上述代码展示了编码器解码器结构的基本搭建方式,并通过自定义梯度更新完成参数调整过程。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值