PyTorch模型构建指南

import torch
from torch import nn
from torch.nn import functional as F

在这里,我们引入神经网络块的概念。块(block)可以描述单个层或、多个层组成的组件或者整个模型本身。可以通过递归的方式将一些块组合成更大的组件。

在这里插入图片描述

从编程的角度来看,块由类(class)表示。 它的任何子类都必须定义一个将其输入转换为输出的前向传播函数, 并且必须存储任何必需的参数。 注意,有些块不需要任何参数。 最后,为了计算梯度,块必须具有反向传播函数。 在定义我们自己的块时,由于自动微分(在 2.5节 中引入) 提供了一些后端实现,我们只需要考虑前向传播函数和必需的参数。

在构造自定义块之前,我们先回顾一下多层感知机 ( 4.3节 )的代码。 下面的代码生成一个网络,其中包含一个具有256个单元和ReLU激活函数的全连接隐藏层, 然后是一个具有10个隐藏单元且不带激活函数的全连接输出层。

net = nn.Sequential(nn.Linear(20,256),nn.ReLU(),nn.Linear(256,10))
X = torch.rand(2,20)
net(X)
tensor([[-0.0015, -0.1772, -0.0544, -0.0717,  0.1254, -0.0379, -0.0365, -0.0647,
          0.0020,  0.0004],
        [-0.0612, -0.0491, -0.1304, -0.1553,  0.0566, -0.0649,  0.0476, -0.2696,
          0.0333,  0.0608]], grad_fn=<AddmmBackward>)

在这个例子中,我们通过实例化nn.Sequential来构建我们的模型, 层的执行顺序是作为参数传递的。 简而言之,nn.Sequential定义了一种特殊的Module, 即在PyTorch中表示一个块的类, 它维护了一个由Module组成的有序列表。 注意,两个全连接层都是Linear类的实例, Linear类本身就是Module的子类。 另外,到目前为止,我们一直在通过net(X)调用我们的模型来获得模型的输出。 这实际上是net.__call__(X)的简写。 这个前向传播函数非常简单: 它将列表中的每个块连接在一起,将每个块的输出作为下一个块的输入。

1.自定义块

在实现我们的自定义块前,简单总结每个块需要实现的基本功能。

  • 前向传播函数forward,注意,输出的形状可以输入的不同。
  • 计算输出关与输入的梯度,一般由反向传播函数实现(自带)。
  • 存储前向传播中所需的参数。
  • 根据需要初始化模型参数。

下面,我们从零开始编写一个块。 它包含一个多层感知机,其具有256个隐藏单元的隐藏层和一个10维输出层。 注意,下面的MLP类继承了表示块的类。 我们只需要实现我们自己的构造函数(Python中的__init__函数)和前向传播函数。

class MLP(nn.Module):
    # 使用__init__函数作为模型参数声明。这里,我们声明两个全连接的层
    def __init__(self):
        super().__init__()
        self.hidden = nn.Linear(20, 256)
        self.out = nn.Linear(256, 10)

    # 定义模型的前向传播,返回模型的输出
    def forward(self, X):
        # 这里我们使用relu激活函数
        return self.out(F.relu(self.hidden(X)))

我们首先看一下前向传播函数,它以X作为输入, 计算带有激活函数的隐藏表示,并输出其未规范化的输出值。 在这个MLP实现中,两个层都是实例变量。 要了解这为什么是合理的,可以想象实例化两个多层感知机(net1和net2), 并根据不同的数据对它们进行训练。 当然,我们希望它们学到两种不同的模型。

接着我们实例化多层感知机的层,然后在每次调用前向传播函数时调用这些层。 注意一些关键细节: 首先,我们定制的__init__函数通过super().__init__() 调用父类的__init__函数, 省去了重复编写模版代码的痛苦。 然后,我们实例化两个全连接层, 分别为self.hiddenself.out。 注意,除非我们实现一个新的运算符, 否则我们不必担心反向传播函数或参数初始化, 系统将自动生成这些。

net = MLP()
net(X)
tensor([[ 0.2712,  0.1333,  0.0337, -0.2076,  0.2360, -0.1404,  0.0934,  0.1479,
         -0.1069, -0.1572],
        [ 0.2974,  0.1053,  0.1088, -0.2039,  0.2487, -0.1420,  0.0689,  0.2123,
         -0.0841, -0.1395]], grad_fn=<AddmmBackward>)

块的一个主要优点是它的多功能性。 我们可以子类化块以创建层(如全连接层的类)、 整个模型(如上面的MLP类)或具有中等复杂度的各种组件。 我们在接下来的章节中充分利用了这种多功能性, 比如在处理卷积神经网络时。

2.顺序块

现在我们可以更仔细地看看Sequential类是如何工作的, 回想一下Sequential的设计是为了把其他模块串起来。 为了构建我们自己的简化的MySequential, 我们只需要定义两个关键函数:

  1. 一种将块逐个追加到列表中的函数。
  2. 一种前向传播函数,用于将输入按追加块的顺序传递给块组成的“链条”。
class MySequential(nn.Module):
    def __init__(self, *args):
        super().__init__()
        for idx, module in enumerate(args):
            # 这里,module是Module子类的一个实例。我们把它保存在'Module'类的成员
            # 变量_modules中。module的类型是OrderedDict
            self._modules[str(idx)] = module
    def forward(self, X):
        for block in self._modules.values():
            X = block(X)
        return X

__init__函数将每个模块逐个添加到有序字典_modules中。 你可能会好奇为什么每个Module都有一个_modules属性? 以及为什么我们使用它而不是自己定义一个Python列表? 简而言之,_modules的主要优点是: 在模块的参数初始化过程中, 系统知道在_modules字典中查找需要初始化参数的子块。

net = MySequential(nn.Linear(20,256),nn.ReLU(),nn.Linear(256,10))
net(X)
tensor([[-0.1680, -0.2637, -0.0627,  0.3287, -0.1013,  0.0048,  0.0051, -0.0412,
          0.0742,  0.1599],
        [-0.0933, -0.0875,  0.0237,  0.2638, -0.0091,  0.0325, -0.0429, -0.1468,
          0.0757,  0.0567]], grad_fn=<AddmmBackward>)

3. 在forward函数中执行代码

Sequential类使模型构造变得简单, 允许我们组合新的架构,而不必定义自己的类。 然而,并不是所有的架构都是简单的顺序架构。 当需要更强的灵活性时,我们需要定义自己的块。 例如,我们可能希望在前向传播函数中执行Python的控制流。 此外,我们可能希望执行任意的数学运算, 而不是简单地依赖预定义的神经网络层。

到目前为止, 我们网络中的所有操作都对网络的激活值及网络的参数起作用。 然而,有时我们可能希望合并既不是上一层的结果也不是可更新参数的项, 我们称之为常数参数(constant parameter)。 例如,我们需要一个计算函数 f ( x , w ) = c ⋅ w ⊤ x f(\mathbf{x},\mathbf{w}) = c \cdot \mathbf{w}^\top \mathbf{x} f(x,w)=cwx的层,其中 x \mathbf{x} x是输入, w \mathbf{w} w是参数, c c c是某个在优化过程中没有更新的指定常量。
因此我们实现了一个FixedHiddenMLP类,如下所示:

class FixedHiddenMLP(nn.Module):
    def __init__(self):
        super().__init__()
        # rand_weight 参数不参与梯度的计算。其在训练期间保持不变
        self.rand_weight = torch.rand((20,20), requires_grad=False)
        self.linear = nn.Linear(20,20)
        
    def forward(self,X):
        X = self.linear(X)
        # relu(X*rand_weight)+1
        X = F.relu(torch.mm(X, self.rand_weight) + 1)
        # 复用全连接层。相当于两个全连接层共享参数
        X = self.linear(X)
        # 控制流
        while X.abs().sum() > 1:
            X /= 2
        return X.sum()

在这个FixedHiddenMLP模型中,我们实现了一个隐藏层,其权重(self.rand_weight)在实例化时被随机初始化,之后为常量。这个权重不是一个模型参数,因此它永远不会被反向传播更新。然后,神经网络将这个固定层的输出通过一个全连接层。

注意,在返回输出之前,模型做了一些不寻常的事情:它运行了一个while循环,在 L 1 L_1 L1范数大于 1 1 1的条件下,将输出向量除以 2 2 2,直到它满足条件为止。最后,模型返回了X中所有项的和。注意,此操作可能不会常用于在任何实际任务中,我们只是向你展示如何将任意代码集成到神经网络计算的流程中。

net = FixedHiddenMLP()
net(X)
tensor(0.1988, grad_fn=<SumBackward0>)

接下来,发动你的创造力,随性地创造一个网络吧

class DiyNet(nn.Module):
    def __init__(self):
        super().__init__()
        self.linear = nn.Sequential(nn.Linear(32,64),nn.ReLU(),
                                   nn.Linear(64,32),nn.ReLU())
        self.net = nn.Linear(20,32)
    def forward(self,X):
        X = self.linear(self.net(X))
        return X
net = nn.Sequential(DiyNet(), nn.Linear(32, 20), FixedHiddenMLP())
net(X)
tensor(-0.1404, grad_fn=<SumBackward0>)

你可能会开始担心操作效率的问题。 毕竟,我们在一个高性能的深度学习库中进行了大量的字典查找、 代码执行和许多其他的Python代码。 Python的问题全局解释器锁 是众所周知的。 在深度学习环境中,我们担心速度极快的GPU可能要等到CPU运行Python代码后才能运行另一个作业。

提高Python速度的最好方法是完全避免使用Python。 Gluon这样做的一个方法是允许混合式编程(hybridization),这将在后面描述。 Python解释器在第一次调用块时执行它。 Gluon运行时记录正在发生的事情,以及下一次它将对Python调用加速。 在某些情况下,这可以大大加快运行速度, 但当控制流(如上所述)在不同的网络通路上引导不同的分支时,需要格外小心。 我们建议感兴趣的读者在读完本章后,阅读混合式编程部分( 12.1节 )来了解编译。

4.小结

  • 一个块可以有许多层来组成,也可以有许多块组成
  • 块可以包含控制流代码
  • 块负责大量的内部处理,DIY块需要继承nn.Module,并编写__init__()来完成参数初始化和forward()计算输出,反向传播函数已经由父类完成。
  • 层和块的计算顺序由nn.Sequential块处理。

5.练习

  1. 如果将MySequential中存储块的方式更改为Python列表,会出现什么样的问题?

  2. 实现一个块,它以两个块为参数,例如net1和net2,并返回前向传播中两个网络的串联输出。这也被称为平行块。

  3. 假设你想要连接同一网络的多个实例。实现一个函数,该函数生成同一个块的多个实例,并在此基础上构建更大的网络。

5.1 列表
class MySequential(nn.Module):
    def __init__(self, *args):
        super().__init__()
        self.listModule = []
        for idx, module in enumerate(args):
            self.listModule.append(module)
            # 这里,module是Module子类的一个实例。我们把它保存在'Module'类的成员
            # 变量_module的类型是OrderedDict
#             self._modules[str(idx)] = module
    def forward(self, X):
        for block in self.listModule:
            X = block(X)
        return X
net = MySequential(nn.Linear(20,32),nn.ReLU(),nn.Linear(32,20))
net(X)
tensor([[-0.0612, -0.1418, -0.0905,  0.0409,  0.1905,  0.1036,  0.1557,  0.3216,
          0.0395, -0.1195,  0.0672, -0.1791, -0.1435,  0.0773,  0.1667, -0.1215,
          0.1542, -0.1962,  0.2450,  0.2124],
        [-0.1960, -0.1374, -0.0353,  0.0022,  0.0558,  0.2038,  0.1903,  0.1610,
          0.0320, -0.1472,  0.1041, -0.1667, -0.1272,  0.0225,  0.1342, -0.1349,
          0.0991, -0.1492,  0.1766,  0.1278]], grad_fn=<AddmmBackward>)
5.2 平行块
class parallelModule(nn.Module):
    def __init__(self, net1, net2):
        super().__init__()
        # 下面的这两种形式均可
#         self.net1 = net1
#         self.net2 = net2
        self._modules[str(1)] = net1
        self._modules[str(2)] = net2
#         for idx, module in enumerate(args):
#             self._modules[str(idx)] = module

    def forward(self, X):
        print(self._modules.values())
        for block in self._modules.values():
            X = block(X)
        return X
net = parallelModule(nn.Linear(20,32), nn.Linear(32,16))
net(X)
odict_values([Linear(in_features=20, out_features=32, bias=True), Linear(in_features=32, out_features=16, bias=True)])





tensor([[-0.3478, -0.1512, -0.1576, -0.1433, -0.1171, -0.0675, -0.0734, -0.1331,
         -0.2036, -0.1286, -0.0510,  0.2033,  0.0385, -0.0369,  0.0465, -0.0275],
        [-0.3107,  0.0292, -0.0291, -0.0682, -0.2303, -0.1109,  0.0330, -0.0092,
         -0.1638,  0.1893,  0.1081, -0.0902, -0.0447,  0.0637,  0.1928, -0.0880]],
       grad_fn=<AddmmBackward>)
3.组合
def produceModule(number):
    modules = []
    for i in range(number):
        modules.append(parallelModule(nn.Linear(20,32), nn.Linear(32,20)))
    return modules
class modules(nn.Module):
    def __init__(self, modules):
        super().__init__()
        for idx, module in enumerate(modules):
            self._modules[str(idx)] = module
    
    def forward(self,X):
        for block in self._modules.values():
            X = block(X)
        return X
net = modules(modules = produceModule(3))
net(X)
odict_values([Linear(in_features=20, out_features=32, bias=True), Linear(in_features=32, out_features=20, bias=True)])
odict_values([Linear(in_features=20, out_features=32, bias=True), Linear(in_features=32, out_features=20, bias=True)])
odict_values([Linear(in_features=20, out_features=32, bias=True), Linear(in_features=32, out_features=20, bias=True)])

tensor([[-0.0147,  0.1805,  0.1106, -0.1826, -0.0328,  0.1273,  0.0278,  0.0042,
         -0.0744, -0.0244, -0.1791, -0.2220,  0.0312, -0.0530, -0.1900,  0.0511,
         -0.0481, -0.0406, -0.1171,  0.0160],
        [-0.0399,  0.1798,  0.1284, -0.2082, -0.0151,  0.1517,  0.0229, -0.0029,
         -0.0967, -0.0365, -0.1746, -0.2165,  0.0179, -0.0278, -0.2012,  0.0635,
         -0.0227, -0.0541, -0.1252, -0.0161]], grad_fn=<AddmmBackward>)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值