COMSOL案例学习(2):非定常圆柱绕流三维模型

本文详细介绍了使用COMSOL进行非定常三维圆柱绕流的模拟过程,包括几何模型、速度分布、流型特征及升力和曳力系数的计算。通过分析升力和曳力系数随时间的变化,揭示了流动特性。同时,探讨了流体离散化方法、自动时间步进技术,并展示了不同时间点的流线图,为CFD研究提供了参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

✅作者简介:大家好我是Xlong,一枚正在学习COMSOL、Python的工科研究僧
📃个人主页: Xlong的个人博客主页
🔥系列专栏:COMSOL学习
💖如果觉得博主的文章还不错的话,请👍支持一下博主哦🤞

案例链接:

非定常圆柱绕流三维模型https://cn.comsol.com/model/unsteady-3d-flow-past-a-cylinder-73041

目录

一、案例简介

二、模型定义

2.1 几何模型

2.2 流入速度分布

2.3 流型的特征

2.4 升力系数和曳力系数

 三、模拟结果

3.1 升力系数随时间的变化情况

 3.2 曳力系数随时间的变化情况

 3.3 t=1~8 s时绘制的流线

 四、知识点总结

4.1 流体离散化中的P2+P2形、P2+P1形、P1+P1形函数

4.2 自动时间步进的广义α方法、BDF方法(向后差分公式)

4.3 将流动区域划分为多个子域


一、案例简介

        圆柱绕流是计算流体力学(CFD)中常见的算例。所谓“非定常”指流体的流动状态随时间而改变。若流动状态不随时间而改变,则为“定常流动”。现实生活中,流体的流动几乎都是非定常的。

        在本案例中,主要研究了绕圆柱体0到8秒(0~8s)内的不可压缩三维非定常流动,计算了升力系数和曳力系数,并绘制了流线

二、模型定义

2.1 几何模型

        几何形状是半径为R的圆柱体,其轴与z轴平行,位于长方体[0,L]\times [0,H]\times[0,H]内(xc,yc,0)处,如图1所示,显示的是R = 0.05m、L = 2.5m、H = 0.5m且x_{c} = 0.5m、y_{c} = 0.2m所对应的几何图形。

图1 几何模型:放置在长方体中的圆柱体

2.2 流入速度分布

        本例中的流体为不可压缩的牛顿流体,其运动粘度为10^{^{-3}}m^{2}/s流入速度分布随时间变化

2.3 流型的特征

        流型的特征用雷诺数表示,定义为:

        Re=\frac{\rho\ U_{mean}D }{\mu }

        其中,\rho是流体密度,U_{mean}表示自由流的平均流速,D是圆柱直径,\mu是流体动力粘度。

        

2.4 升力系数和曳力系数

        (1)升力系数:一个无量纲量,指物体所受到的升力与流体动压和参考面积的乘积之比。

        (2)曳力系数:一个无量纲量,一般指流体阻力系数,指一个物体在流体(液体或气体)中和流体有相对运动时,物体会受到流体的阻力。阻力的方向和物体相对于流体的速度方向相反,其大小和相对速度的大小有关。

        在本例中,升力系数C_{D}和曳力系数C_{L}是时间的函数:

        其中,F_{D}F_{L}表示曳力和升力,A=2RH是投影面积 。

 三、模拟结果

3.1 升力系数随时间的变化情况

 图2  升力系数随时间的变化曲线

 3.2 曳力系数随时间的变化情况

  图3  曳力系数随时间的变化曲线

 3.3 t=1~8 s时绘制的流线

   图4  t=1s时的流线

    图5  t=2s时的流线

     图6  t=3s时的流线

      图7  t=4s时的流线

       图8  t=5s时的流线

        图9  t=6s时的流线

         图10  t=7s时的流线

       图11  t=7.95s时的流线

 四、知识点总结

4.1 流体离散化中的P2+P2形、P2+P1形、P1+P1形函数

        (1)离散化的含义是什么?

        详细内容见链接         离散化的含义是什么?它对网格和求解结果有什么影响? - 知乎

        (2)P2+P2与P2+P1、P1+P1相比,前者更稳健且更准确。

4.2 自动时间步进的广义α方法、BDF方法(向后差分公式)

                                           瞬态求解器提供三种不同的时间步进方法:广义\alp方法、隐式向后差分公式以及显示龙格-库塔系列方法。

        (1)隐式向后差分公式:一种使用向后差分公式的隐式求解器,其精度在一阶到五阶之间变化,以稳定性而著称。(详细内容请见链接)      

        (2)广义α方法:与二阶向后差分公式类似,但底层技术不同。(详细内容请见链接)

        (3)显示龙格-库塔系列方法:最适用于“常微分方程组”,但对于涉及“偏微分方程”的问题,往往不是很有效。(详细内容请见链接)

4.3 将流动区域划分为多个子域

        在本例中,通过PDF教程中的步骤进行操作将流动区域划分为多个子域,这样可在远离圆柱体的区域使用较粗化的网格,节省计算资源。

持续更新中.................................................................

原创不易,各位看官请随手点下Follow和Star,感谢!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Xlong~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值