51Nod-1315 合法整数集

本文探讨了一种特定的集合问题,即如何通过删除最少数量的元素使一个整数集合变得合法。合法集合意味着其所有子集经过特定运算后的结果都不等于预设值X。文章详细解释了问题背景,并提供了一个C++实现示例,用于解决该问题。
摘要由CSDN通过智能技术生成

一个整数集合S是合法的,指S的任意子集subS有Fun(SubS)!=X,其中X是一个固定整数,Fun(A)的定义如下:
A为一个整数集合,设A中有n个元素,分别为a0,a1,a2,…,an-1,那么定义:Fun(A)=a0 or a1 or … or an-1;Fun({}) = 0,即空集的函数值为0.其中,or为或操作。
现在给你一个集合Y与整数X的值,问在集合Y至少删除多少个元素能使集合Y合法?

例如:Y = {1,2,4},X=7;显然现在的Y不合法,因为 1 or 2 or 4 = 7,但是删除掉任何一个元素后Y将合法。所以,答案是1.
Input
第一行两个整数N,X,其中N为Y集合元素个数,X如题所述,且1<=N<=50,1<=X<=1,000,000,000.
之后N行,每行一个整数yi,即集合Y中的第i个元素,且1<=yi<=1,000,000,000.
Output
一个整数,表示最少删除多少个元素。
Sample Input
5 7
1
2
4
7
8
Sample Output
2

#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<iostream>
using namespace std;
typedef long long ll;
const int INF = 0x3ffffff;
int f[1000000];
int f1[100000];
void finda(int k)
{
    int cnt=1;
    while(k!=0)
    {
        if(k%2==1) f[cnt]++;
        k/=2;
        cnt++;
    }
}//统计二进制某位上是否为1 
void finda1(int k)
{
    int cnt=1;
    while(k!=0)
    {
        if(k%2==1) f1[cnt]++;
        k/=2;
        cnt++;
    }
}
int main()
{
    memset(f,0,sizeof(f));
    memset(f1,0,sizeof(f1));
    int n,x,a[55];
    scanf("%d%d",&n,&x);
    for(int i=1;i<=n;i++)
    {
        scanf("%d",&a[i]);
    }
    sort(a+1,a+n+1);
    int ans=0,num=0,x1=x;
    while(x1!=0)
    {               //num表示x的最高位 
        x1/=2;
        num++;
    }
    finda1(x);      //x有1的位置f1[i]==1 
    for(int i=1;i<=n;i++)
    {
        if((a[i]|x)>x) 
            continue;
        finda(a[i]);
    }
    int minn=INF;
    for(int i=1;i<=num;i++)
    {
        if(minn>f[i]&&f1[i]==1) 
            minn=f[i];
    }
    printf("%d\n",minn);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值