sqrt和sqrtm在矩阵运算中的区别

本文深入解析了矩阵开方的两种不同方法:sqrt和sqrtm。sqrt适用于矩阵内每个元素的独立开方,而sqrtm则求解矩阵的整体平方根,涉及特征值和特征向量的计算,特别指出对于具有负实部特征值的矩阵,sqrtm将产生复数结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

sqrt是矩阵内每一个元素对应开平方,即H=[a,b;c,d],则

sqrtm是矩阵开平方,即P=A*A,则sqrtm(P)=A,A是其每个特征值都具有非负实部的唯一平方根。如果A具有任何包含负实部的特征值,则生成复数结果。如果A是奇异矩阵,则A可能没有平方根。如果检测到完全奇异性,则会输出一条警告。

例如:

a=[1,4;9,16];

sqtr(a)=[1,2;3,4];

sqrtm(a)=[0.4662 + 0.9359i,0.8860 - 0.2189i;1.9935 - 0.4924i,3.7888 + 0.1152i]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值