计算机视觉
小吕同学吖
这个作者很懒,什么都没留下…
展开
-
S7-ENet 论文解读
ENet(efficient)更加高效的分割网络,基于ResNet网络生成的。1+2、介绍语义分割对于理解图像的内容和寻找目标对象具有重要意义。(1)SegNet,编码器是普通的CNN,用于对输入进行分类;解码器用于对编码器的输出进行上采样(upsample)。架构庞大,参数较多,导致推理速度较慢。(2)FCN(3)其他现有的体系结构使用更简单的分类器,然后将它们与条件随机场(CRF)...原创 2019-02-27 13:21:06 · 1476 阅读 · 0 评论 -
S6-DeepLab v1&v2&v3 论文解读
Atrous(Dilated)Atrous,也叫convolution with holes(空洞卷积或扩张卷积),和pooling相比,atrous convolution也是下采样,只是采样的位置是固定的,可以更好的保持空间结构信息。此处引入一个扩充率参数(dilated rate),用来控制扩张(空洞填充)的大小。池化在增大感受野(接受域)会丢失空间结构信息,而空洞卷积在增大感受野的同时,...原创 2019-03-04 17:40:08 · 839 阅读 · 0 评论 -
NIMA:Neural Image Assessment
图像质量评估,既有对图像美学质量的一个评估,又有对图像内容的一个评估。技术质量评估主要是低阶的(如噪声,模糊度,压缩),美学质量评估量化了情感和美感相关的语义级别的特征。图像质量评估分为:全参考无参考全参考质量评价算法主要通过对图像的视觉特征进行分析,量化参考图像和失真图像之间的差异,以计算失真图像的视觉质量。相对全参考质量评价算法,无参考质量评价算法在计算失真图像的视觉质量时不需要...原创 2019-07-24 16:11:46 · 360 阅读 · 0 评论 -
斯坦福CS231n课程笔记(第二课)
1、图像分类Challenges:光照、角度、尺度、形变、遮挡等。2、数据驱动图像分类一般方法:def classify(image): #算法 return class_label数据驱动方法:#训练模型def train(train_images, train_labels): #ML算法 return model#预测结果def pred...原创 2019-07-10 00:01:25 · 223 阅读 · 0 评论 -
斯坦福CS231n课程笔记(第一课)
背景:YouTube每秒有5小时的视频被上传,需要正确分类。CV历史:生物视觉:5亿4千万年前,寒武纪时期物种大爆发,眼睛进化出来。机器视觉:17世纪文艺复兴时期,小孔成像相机出现。50-60年代,Hubel和Wiesel研究猫的视觉系统,将物体由简单几何形状表示。1999年,SIFT目标识别。2005年,HOG直方图特征。数据集:PASCAL,2006-2012ImageN...原创 2019-07-09 19:01:19 · 297 阅读 · 0 评论