hdu 1086 You can Solve a Geometry Problem too(求所有线段相交点的个数)

判断线段是否相交 

  1. 快速排斥实验
  2. 跨立实验

介绍 :求线段是否相交


如图,判断点C和点D是否在线段AB的两侧,需要判断向量(AC)和向量(AB)的叉集 与向量(AD)和向量(AB)的叉集是否是异号的。

同理还需要判断 点AB是否在线段CD两侧

#include<stdio.h>
#include<string.h>
#include<iostream>
using namespace std;
struct dian
{
    double x,y;
};

struct xian
{
    dian a;dian b;
};
//判断两条线段是否相交 首先一定要通过快速排斥试验之后 再通过跨立试验之后就能判断了这两线段相交.
bool judge(dian a,dian b,dian c,dian d)
{
    //快速排斥
    if(!(min(a.x,b.x)<=max(c.x,d.x) && min(c.y,d.y)<=max(a.y,b.y)&&
        min(c.x,d.x)<=max(a.x,b.x) && min(a.y,b.y)<=max(c.y,d.y)))
        //判断两条线段组成的矩形是否相交 如果不相交 那么这两条线是不会相交的.
        //特别要注意一个矩形含于另一个矩形之内的情况
    return false;
    
    double u,v,w,z;
    //定a定c.
    //c.d在ab两端 a.b在cd两端.就能判断相交.
    u=(c.x-a.x)*(b.y-a.y)-(b.x-a.x)*(c.y-a.y);//c.b.a//u的正负表示bc在ab的顺时针方向还是逆时针方向.
    v=(d.x-a.x)*(b.y-a.y)-(b.x-a.x)*(d.y-a.y);//d.b.a//同理
    w=(a.x-c.x)*(d.y-c.y)-(d.x-c.x)*(a.y-c.y);//a.d.c
    z=(b.x-c.x)*(d.y-c.y)-(d.x-c.x)*(b.y-c.y);//b.d.c
    return (u*v<=0.00000001 && w*z<=0.00000001);

}

int main()
{
int n;
    xian str[101];
    while(cin>>n && n!=0)
    {
        int count=0;
        for(int i=0;i<n;i++)
        {
            cin>>str[i].a.x>>str[i].a.y>>str[i].b.x>>str[i].b.y;
        }
        for(int i=0;i<n;i++)//遍历所有点什么的还是比较容易理解的~.
            for(int j=i+1;j<n;j++)
                if(judge(str[i].a,str[i].b,str[j].a,str[j].b)) count++;
        cout<<count<<endl;
    }
    return 0;
}
#include<stdio.h>
#include<string.h>
#include<iostream>
using namespace std;

struct point
{
    double x,y;
};

struct xian
{
   point a;point b;
};

const double eps = 1e-10;

double min(double a, double b)
{
    return a < b ? a : b;
}
double max(double a, double b)
{
    return a > b ? a : b;
}
//判断线段ab 和线段cd相交 
bool inter(point a, point b, point c, point d)
{
    if (min(a.x, b.x) > max(c.x, d.x) || min(a.y, b.y) > max(c.y, d.y) || min(c.x, d.x) > max(a.x, b.x) ||
    min(c.y, d.y) > max(a.y, b.y))
    {
        return 0;
    }
    double h, i, j, k;
    h = (b.x - a.x) * (c.y - a.y) - (b.y - a.y) * (c.x - a.x);
    i = (b.x - a.x) * (d.y - a.y) - (b.y - a.y) * (d.x - a.x);
    j = (d.x - c.x) * (a.y - c.y) - (d.y - c.y) * (a.x - c.x);
    k = (d.x - c.x) * (b.y - c.y) - (d.y - c.y) * (b.x - c.x);
    return h * i <= eps && j * k <= eps;
}
 

int main()
{
int n;
    xian str[101];
    while(cin>>n && n!=0)
    {
        int count=0;
        for(int i=0;i<n;i++)
        {
            cin>>str[i].a.x>>str[i].a.y>>str[i].b.x>>str[i].b.y;
        }
        for(int i=0;i<n;i++)//遍历所有点什么的还是比较容易理解的~.
            for(int j=i+1;j<n;j++)
                if(inter(str[i].a,str[i].b,str[j].a,str[j].b)) count++;
        cout<<count<<endl;
    }
    return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值