全自动化光学检测现状研究

液晶显示屏生产中,传统的人工检测效率低且易受主观因素影响。全自动化光学检测(AOI)技术利用光学传感器和图像处理,提高了检测速度和准确性。AOI通过CCD相机采集图像,经过数字信号处理,识别各种缺陷,如点缺陷、线缺陷、Mura等。国内学者主要研究图像处理技术、检测系统和方法,国外研究侧重于稳定检测算法和缺陷分类。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        近年来,随着全球科学技术的迅速发展,全世界液晶显示及相关产业发展规模日益增大,TFT-LCD 及其相关产业的市场与生产制造商产业也随之不断地增加。最初,TFT-LCD 技术以日本技术为世界主导,随后,韩国与中国台湾也随之逐渐的发展起来,并且这些年来每年的增速成倍上升,而 TFT-LCD 以低成本、出众的体积优势、高解析度以及高亮度等优势逐步占据显示器的主导地位,普遍用于智能手机,台式与笔记本电脑、多媒体会议终端显示屏、智能手表、车载多媒体终端和家用智能电视等生活与办公领域。
        目前,TFT-LCD 行业在全中国乃至全球都竞争激烈,人工劳动力的使用直接决定着生产成本,最终决定着产品的成本竞争力。由于液晶显示屏生产涉及到的工艺流程多达 300 多个,工艺繁杂,任何环节都有可能出现缺陷问题,而现如今多数的液晶显示屏生产商还是通过采用人工作业,利用人眼识别判断的的方法来检测通电后在不同显示信号作用下的液晶显示屏的显示缺陷。这种传统的检测方法检测效率较低、且受作业人员的主观因素影响大,并且检测质量无法得到较好的保障、很难量化对缺陷评定等问题,具有较大弊端。TFT-LCD 工艺流程如图1-1 所示:


     

### MATLAB 实现吸管生产线检测研究现状 #### 国外研究现状 在国外,利用MATLAB进行工业视觉检测应用已经相当成熟。许多研究机构和企业通过MATLAB开发了高效的自动检测系统来监控生产过程的质量控制。对于吸管这类细长物体的检测,通常采用基于边缘检测的方法,如Canny算子[BW = edge(I,'canny')][^2],可以有效地识别出吸管轮廓并进一步分析其形状特征。 此外,在一些先进的制造环境中,Hough变换被用来检测吸管是否存在弯曲或其他异常情况[Matalb实现Hough变换检测图像中的直线]。这些技术不仅提高了生产的效率,还显著减少了次品率。国外学者也探索了机器学习算法与传统图像处理相结合的方式,以提高缺陷分类精度。 #### 国内研究进展 在国内,随着制造业转型升级的需求日益增长,越来越多的企业开始重视产品质量管理,并积极引入智能化手段提升竞争力。针对吸管生产线上的具体问题,研究人员同样采用了多种成熟的计算机视觉技术和工具来进行在线监测。 例如,有团队利用MATLAB内置的强大图像处理库实现了对透明材质吸管表面瑕疵的有效捕捉;还有项目组专注于多传感器融合方案的设计——即除了光学成像之外还会结合其他物理量感知装置共同完成更全面的产品评估。值得注意的是,部分高校实验室正尝试将深度神经网络应用于此类任务当中,旨在突破现有技术水平局限性的同时降低人工干预程度。 ```matlab % 使用MATLAB进行初步的吸管边缘检测示例代码 I = imread('straw_image.jpg'); BW = edge(rgb2gray(I), 'canny'); % Canny方法提取图像边界 imshow(BW); title('Detected Edges of Straw Image') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DLANDML

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值