深度学习中的tile()函数理解

目录

函数定义

实例


函数定义

tensorflow中的tile()函数是用来对张量(Tensor)进行扩展的,其特点是对当前张量内的数据进行一定规则的复制。最终的输出张量维度不变。

函数定义:

tf.tile(
    input,
    multiples,
    name=None
)

input是待扩展的张量multiples是扩展方法,扩展后的维数不变。
假如input是一个3维的张量。那么mutiples就必须是一个1x3的1维张量。这个张量的三个值依次表示input的第1,第2,第3维数据扩展几倍。


实例

import tensorflow as tf

a = tf.constant([[1, 2], [3, 4], [5, 6]], dtype=tf.float32)
a1 = tf.tile(a, [2, 3])
with tf.Session() as sess:
    print(sess.run(a))
    print(sess.run(tf.shape(a)))
    print(sess.run(a1))
    print(sess.run(tf.shape(a1)))
=======
[[1. 2.]
 [3. 4.]
 [5. 6.]]
[3 2]
[[1. 2. 1. 2. 1. 2.]
 [3. 4. 3. 4. 3. 4.]
 [5. 6. 5. 6. 5. 6.]
 [1. 2. 1. 2. 1. 2.]
 [3. 4. 3. 4. 3. 4.]
 [5. 6. 5. 6. 5. 6.]]
[6 6]

tf.tile()具体的操作过程如下:
(原始矩阵应为3*2)
这里写图片描述

请注意:上面绘图中第一次扩展后第一维由三个数据变成两行六个数据,多一行并不是多了一维,数据扔为顺序排列,只是为了方便绘制而已。

每一维数据的扩展都是将前面的数据进行复制然后直接接在原数据后面。

如果multiples的某一个数据为1,则表示该维数据保持不变。

在深度学习目标检测中,经常遇到需要对原始图像尺寸进行扩维的代码,理解如下:

import tensorflow as tf
# a=tf.range(10, dtype=tf.int32)
output_size=5
a=tf.range(output_size, dtype=tf.int32)#生成一个一维数组
b=tf.range(output_size, dtype=tf.int32)[tf.newaxis, :]#给数组增加一维,变为二维
c = tf.tile(tf.range(output_size, dtype=tf.int32)[tf.newaxis, :], [output_size, 1])#第一个维度复制,第二个维度不变

b1=y = tf.range(output_size, dtype=tf.int32)[:, tf.newaxis]
c1 = tf.tile(tf.range(output_size, dtype=tf.int32)[:, tf.newaxis], [1, output_size])

with tf.Session() as sess:
    sess.run([a,b,c,b1,c1])
    print(a,b,c,b1,c1)



Tensor("range_11:0", shape=(5,), dtype=int32) Tensor("strided_slice_3:0", shape=(1, 5), dtype=int32) Tensor("Tile_2:0", shape=(5, 5), dtype=int32) Tensor("strided_slice_5:0", shape=(5, 1), dtype=int32) Tensor("Tile_3:0", shape=(5, 5), dtype=int32)

 

### 如何在 ArcGIS Pro 中使用深度学习进行地理空间数据分析 #### 准备环境 为了确保能够顺利执行深度学习任务,在开始之前需确认已正确配置所需的软硬件条件。这包括但不限于安装特定版本的操作系统、Python解释器以及其他必要的依赖项[^2]。 #### 安装深度学习框架 对于希望利用深度学习功能的用户来说,安装合适的深度学习库至关重要。通过遵循官方文档中的指导,可以轻松完成TensorFlow或PyTorch等流行框架的部署过程。此外,还需注意兼容性的考量,比如GPU驱动程序的选择应与所选框架相匹配[^1]。 #### 数据预处理 当一切就绪之后,下一步就是准备用于训练的数据集。此阶段涉及图像裁剪、标签创建等一系列操作,目的是让原始遥感影像或其他形式的空间数据更适合于机器学习算法的学习需求。例如,在ArcGIS环境中可以通过`Export Training Data For Deep Learning`工具来简化这一流程[^3]。 ```python import arcpy from arcgis.learn import prepare_data arcpy.management.ExportTrainingDataForDeepLearning( "in_raster", "output_folder", tile_size="256 256" ) ``` #### 构建与训练模型 有了经过适当调整后的高质量样本集合后,便可以根据具体应用场景挑选适合的目标检测或者语义分割网络架构来进行定制化开发。这里以单次多框探测器(SSD)为例展示了一个典型的工作流: - 使用`arcgis.learn.SingleShotDetector.from_model()`加载预先训练好的基础权重; - 对新收集到的数据实施迁移学习策略进一步优化参数设置; - 利用内置评估函数监控整个迭代过程中各项性能指标的变化趋势; ```python detector = SingleShotDetector(data, backbone=backbones.resnet34()) detector.fit_one_cycle(epochs=10, lr=slice(1e-4)) metrics = detector.evaluate() print(metrics['precision'], metrics['recall']) ``` #### 应用成果 最后一步则是将训练有素的人工神经元应用于实际场景当中去解决问题。借助于ArcGIS平台提供的强大可视化能力,可以直接在地图视图内直观呈现预测结果,并支持与其他矢量要素叠加显示以便更好地辅助决策制定者理解分析结论的价值所在。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DLANDML

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值