15、线性系统求解方法:直接法与迭代法

线性系统求解方法:直接法与迭代法

1. 矩阵分解与相关公式

1.1 投影算子的矩阵分解

矩阵分解可以从投影算子的角度来呈现。秩为 1 的矩阵 ( P = vv^H ) ,其中向量 ( v ) 满足 ( |v|= 1 ) ,它是一个投影算子,能将向量投影到由向量 ( v ) 张成的一维子空间上。很容易证明 ( Px - x ) 与 ( x ) 正交,所以 ( P ) 也是正交投影算子。可酉对角化的矩阵可以表示为投影的加权和:
- ( P_n = v_nv_n^H )
- ( A = \sum_{n=1}^{N} \lambda_n P_n )

任何矩阵都可以通过奇异值分解(SVD)表示为 ( A = \sum_{n=1}^{N} s_nu_nv_n^H ) ,其中 ( s_n ) 是矩阵的奇异值, ( u_n ) 和 ( v_n ) 是一组相互正交的向量。

1.2 其他矩阵公式

若 ( A ) 是非奇异矩阵, ( v ) 和 ( w ) 是维数相称的向量,则有 ( (A + vw^H)^{-1} = A^{-1} - \frac{(A^{-1}v)(w^H A^{-1})}{1 + w^H A^{-1}v} ) 。这里 ( vw^H ) 是秩为 1 的矩阵,该公式给出了矩阵 ( A ) 的秩 1 扰动的逆。

2. 直接法与迭代法概述

2.1 直接法

求解线性系统 ( Ax = b ) 最直接的方法是构造矩阵的逆 ( A^{-1} ) ,可以通过计算 ( A ) 的子矩阵行列式的比值来实现。但这种方法计算效率极低,计算一个 ( N \times N

需求响应动态冰蓄冷系统需求响应策略的优化研究(Matlab代码实现)内容概要:本文围绕需求响应动态冰蓄冷系统及其优化策略展开研究,结合Matlab代码实现,探讨了在电力需求侧管理背景下,冰蓄冷系统如何通过优化运行策略参需求响应,以实现削峰填谷、降低用电成本和提升能源利用效率的目标。研究内容包括系统建模、负荷预测、优化算法设计(如智能优化算法)以及多场景仿真验证,重点分析不同需求响应机制下系统的经济性和运行特性,并通过Matlab编程实现模型求解结果可视化,为实际工程应用提供理论支持和技术路径。; 适合人群:具备一定电力系统、能源工程或自动化背景的研究生、科研人员及从事综合能源系统优化工作的工程师;熟悉Matlab编程且对需求响应、储能优化等领域感兴趣的技术人员。; 使用场景及目标:①用于高校科研中关于冰蓄冷系统需求响应协同优化的课题研究;②支撑企业开展楼宇能源管理系统、智慧园区调度平台的设计仿真;③为政策制定者评估需求响应措施的有效性提供量化分析工具。; 阅读建议:建议读者结合文中Matlab代码逐段理解模型构建算法实现过程,重点关注目标函数设定、约束条件处理及优化结果分析部分,同时可拓展应用其他智能算法进行对比实验,加深对系统优化机制的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值