day17|最左结点,路径问题

513 这个题是要找最左边的结点,不是最后一层的第一个左节点,就很简单了

class Solution {
    public int findBottomLeftValue(TreeNode root) {
        Queue<TreeNode> queue = new LinkedList<>();
        if(root != null)
        queue.offer(root);
        int res = 0;
        while(!queue.isEmpty()){
            int len = queue.size();
            for(int i = 0; i<len; i++){
                TreeNode node = queue.poll();
                if(i == 0){
                    res = node.val;
                }
                if(node.left != null){
                    queue.offer(node.left);
                }
                if(node.right!= null){
                    queue.offer(node.right);
                }
            }
        }
        return res;
    }
}

112

方法和求所有路径很像,不同的是,这个只要存在符合条件的,return就行了。

class Solution {
    ArrayList<Integer> list = new ArrayList<Integer>();
    public boolean hasPathSum(TreeNode root, int targetSum) {
        if(root == null){
            return false;
        }
        ArrayList<Integer> path = new ArrayList<>();
        return deal(root,path,targetSum);
    }
    public boolean deal(TreeNode root,ArrayList<Integer> path,int target){
        path.add(root.val);
        if(root.left == null && root.right == null){
            int sum = 0;
            for(int i = 0;i<path.size();i++){
                sum = sum + path.get(i);
            }
            if(sum == target){
                return true;
            }
        }

        if(root.left != null){
            if(deal(root.left,path,target)){
                return true;
            }
            path.remove(path.size() - 1);
        }
        if(root.right != null){
            if(deal(root.right,path,target)){
                return true;
            }
            path.remove(path.size() - 1);
        }
        return false;
    }
}

113.

和112一样,就是注意在list加path的时候,不能简单的写成:list.add(path); 这样的话指向的还是原来的列表,需要重新建一个新的列表,用list.add(new ArrayList<>(path))

class Solution {
     List<List<Integer>> list = new ArrayList<List<Integer>>();
    public List<List<Integer>> pathSum(TreeNode root, int targetSum) {
        List<Integer> path = new ArrayList<>();
        if(root == null){
            return list;
        }
        deal(root,path,targetSum);
        return list;
    }
    public void deal(TreeNode root,List<Integer> path, int targetSum){
        path.add(root.val);
        int sum = 0;
        if(root.left == null && root.right == null){
            for(int i = 0; i < path.size();i++){
                sum = sum + path.get(i);
            }
            if(sum == targetSum){
                list.add(new ArrayList<>(path));
            }
        }
        if(root.left != null){
            deal(root.left,path,targetSum);
            path.remove(path.size() - 1);
        }
        if(root.right != null){
            deal(root.right,path,targetSum);
            path.remove(path.size() - 1);
        }
    }
}

106.中序和后序构造二叉树:

class Solution {
    Map<Integer,Integer> map = new HashMap<>();
    public TreeNode buildTree(int[] inorder, int[] postorder) {
        if(inorder == null){
            return new TreeNode();
        }
        for(int i = 0;i<inorder.length;i++){
            map.put(inorder[i],i);
        }
        return deal(inorder,0,inorder.length,postorder,0,postorder.length);
    }
    public TreeNode deal(int[] inorder, int inIndex,int inEnd,int[] postorder,int postIndex,int postEnd){
        if(inIndex >= inEnd || postIndex >= postEnd){
            return null;
        }
        int centerIndex = map.get(postorder[postEnd - 1]);
        TreeNode center = new TreeNode(inorder[centerIndex]);
        int lenOfLeft = centerIndex - inIndex; 
        center.left = deal(inorder,inIndex,centerIndex,postorder, postIndex,postIndex + lenOfLeft);
        center.right = deal(inorder,centerIndex + 1, inEnd,postorder, postIndex + lenOfLeft,postEnd - 1);
        return center;
    }
}

105.前序和中序遍历二叉树

class Solution {
    Map<Integer,Integer> map = new HashMap<>();
    public TreeNode buildTree(int[] inorder, int[] postorder) {
        if(inorder == null){
            return new TreeNode();
        }
        for(int i = 0;i<inorder.length;i++){
            map.put(inorder[i],i);
        }
        return deal(inorder,0,inorder.length,postorder,0,postorder.length);
    }
    public TreeNode deal(int[] inorder, int inIndex,int inEnd,int[] postorder,int postIndex,int postEnd){
        if(inIndex >= inEnd || postIndex >= postEnd){
            return null;
        }
        int centerIndex = map.get(postorder[postEnd - 1]);
        TreeNode center = new TreeNode(inorder[centerIndex]);
        int lenOfLeft = centerIndex - inIndex; 
        center.left = deal(inorder,inIndex,centerIndex,postorder, postIndex,postIndex + lenOfLeft);
        center.right = deal(inorder,centerIndex + 1, inEnd,postorder, postIndex + lenOfLeft,postEnd - 1);
        return center;
    }
}

有几个需要注意的点:

1.map里要放的是“中”在中间的数组,所以是中序遍历的数组。因为前序遍历的“中”在开头,后序遍历的在结尾最后一个;

2.注意如果采用左闭右开的方式,那么第一轮的时候,两个数组的开始索引是1毋庸置疑,结束索引应该是length,而不是length - 1,因为是右开,不包含这个数。

3.注意前序遍历时,每轮遍历的左开始范围应该是preBegin + 1,因为preBegin是“中”;

后序遍历时,每轮遍历的右结束范围应该是postEnd - 1.

您提到的内容涉及的是一个典型的 **单源路径** 问题,并附有一个具体的题目背景以及相关的输入输出格式说明。以下是对此内容的具体解析: --- ### 单源路径 (SSSP) 概述 #### 定义 单源路径问题是图论中的经典问题之一,目标是从某个起点出发,找到到达所有其他节点的短距离。如果图中边权重均为非负,则可以使用经典的 Dijkstra 算法解决该问题。 #### 输入分析 根据您的描述: - 图中有 `n` 个顶点和 `m` 条有向边; - 边 `(ui, vi)` 的权重为 `wi`; - 起始点固定为 `s = 1`; 我们需要通过某种算法(如Dijkstra 或 SPFA),计算出从起始点到每一个点的距离。 --- ### 示例解释 - 样例数据分析 对于样例数据: ``` 4 6 1 1 2 2 2 3 2 2 4 1 1 3 5 3 4 3 1 4 4 ``` 我们可以构建如下加权有向图: - 节点编号:1、2、3、4; - 边及权重信息如下表所示: | u | v | w | |---|---|---| | 1 | 2 | 2 | | 2 | 3 | 2 | | 2 | 4 | 1 | | 1 | 3 | 5 | | 3 | 4 | 3 | | 1 | 4 | 4 | 运行 Dijkstra 后的结果是 `[0, 2, 4, 3]`,即分别为从起点 1 到各节点的小代价。 --- ### 解决方案步骤 我们可以通过优先队列优化版本的 **Dijkstra 算法** 实现此功能,其时间复杂度大约为 \(O(m \log n)\),适用于大规模稀疏图。下面是基于 C++ 的伪代码实现框架: ```cpp #include <bits/stdc++.h> using namespace std; const long long INF = LLONG_MAX; // 设置无穷大 int main() { int n, m, s; cin >> n >> m >> s; vector<vector<pair<int, int>>> graph(n + 1); // 构建邻接表存储图 for(int i = 0;i<m;i++) { // 初始化边 int ui, vi, wi; cin>>ui>>vi>>wi; graph[ui].emplace_back(vi, wi); } priority_queue<pair<long long,int>,vector<pair<long long,int>>,greater<>> pq; // 小根堆用于选取当前路径 vector<long long> dist(n+1,INF); dist[s]=0; pq.emplace(0LL,s); while(!pq.empty()) { auto [curDist,node] = pq.top(); pq.pop(); if(curDist >dist[node]) continue;// 剪枝 for(auto &[nextNode,nextCost]:graph[node]){ if(dist[nextNode]>dist[node]+ nextCost){ dist[nextNode] = dist[node] + nextCost; pq.emplace(dist[nextNode],nextNode); } } } for(int node=1;node<=n;node++) cout<<dist[node]<<" "; // 输出结果至文件或屏幕 } ``` 上述程序实现了以下关键操作: 1. 使用了优先队列加速访问近未处理结点的操作。 2. 动态更新每个点的佳可达成本并加入待探索集合。 --- ###
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值