
AIGC
文章平均质量分 76
l8947943
如果生命不是为了好玩,那还有什么意义。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Transformer相关学习资料整理
最近频繁看到论文中用到transformer,于是又回头看了看曾经经典的大作。以前只知道大致流程,本次死磕一波,好好梳理细节和内容,因网上大部分资料讲的内容都不错,遂做整理。1. Transformer相关内容变形金刚——Transformer入门刨析详解【Transformer】一文搞懂Transformer | CV领域中Transformer应用图解Transformer | The Illustrated Transformer,这篇文章做的很用心李宏毅2022讲解transformer原创 2024-12-12 11:06:22 · 708 阅读 · 0 评论 -
huggingface-cli下载数据(含下载指定数据教程)
可以理解为配置下载对应文件时候要使用的源。如果要避免这个情况,请将上面这一行写入Linux中的。表示下载指定数据目录,以safetensors结尾的,不下载.bin结尾的文件。注意:使用wget命令并不会得到下载好的大文件内容,这点需要注意。为什么会要这么做,tmd下载一半电脑挂了,头大。上述配置环境变量代码,每次下载前均需要配置。Windows环境没测试过。wikitext文件夹中。原创 2024-12-06 15:35:14 · 7835 阅读 · 0 评论 -
AutoGen实现多代理-Planning_and_Stock_Report_Generation(六)
总的来说,对任务进行分解和规划存在多种方式,我们只展示了一种设计模式,代理之间的回答方式和存在的回复顺序对于程序结果至关重要,这点在群聊模式中是可扩展的重要内容,对于代码设计值得学习思考。原创 2024-10-01 09:00:00 · 507 阅读 · 0 评论 -
AutoGen实现多代理—Coding_and_Financial_Analysis(五)
与其每次都让大型语言模型生成下载股票数据和绘制图表的代码,你可以为这两项任务定义函数,并让大型语言模型在代码中调用这些函数。Args:Returns:symbol.Args:"""plt.plot(将定义的执行器prompt,与write提示词连接,形成一个巨大的promptArgs:Returns:symbol."""...Args:"""...最后,以OpenAI可以理解的形式构造了一个很大的prompt。原创 2024-10-01 09:00:00 · 851 阅读 · 0 评论 -
AutoGen实现多代理-Tool_Use_and_Conversational_Chess(四)
本篇内容以下棋为案例,模拟了三个不同代理的嵌套式聊天,最大的特点是允许代理可以使用定义的工具,扩展了代理的功能。此外,嵌套式工作流是可以借鉴的地方,如何让多代理进行嵌套式聊天,从而解决问题是一个不错的思路。原创 2024-09-30 09:30:00 · 728 阅读 · 0 评论 -
AutoGen框架进行多智能体协作—反思与提升博客文章质量(三)
多轮对话是多代理的重点核心内容,需要注意的是,多代理之间的对话轮次和约束条件是内容管理的重中之重,因此对于对话质量和效率的把控,很大程度取决于base模型,其次是子任务规划,如何让任务合理合规非常重要。原创 2024-09-30 09:00:00 · 569 阅读 · 0 评论 -
用LangGraph搭建智能体—AI Agents in LangGraph(四、持久化和流式输出)
本节学习了持久化和流式输出,最后还有个异步流式输出,按部就班即可。原创 2024-07-22 17:10:16 · 3703 阅读 · 0 评论 -
用LangGraph搭建智能体—AI Agents in LangGraph(三)
可以看到搜索工具,基于代理的搜索和常规搜索代码量确实有差距,代理搜索更加简洁和高效,且无需进行过多内容的过滤。原创 2024-07-22 08:50:20 · 602 阅读 · 0 评论 -
用LangGraph搭建智能体—AI Agents in LangGraph(二)
LangGraph组件其实就是把链式的Agent执行过程,通过graph形式构造出来并执行,具体怎么执行,调用了哪些函数,建议手动debug一次,看看执行流程。原创 2024-07-21 19:57:05 · 1199 阅读 · 1 评论 -
用LangGraph搭建智能体—AI Agents in LangGraph(一)
i = 0 # 控制循环轮次bot = Agent(prompt) # 初始化i += 1result = bot(next_prompt) # 每次将执行的结果,作为下一次提示词返回给模型] # Action函数用于得到过滤后的结果,用于获取后续函数执行时的输入和参数observation = known_actions[action](action_input) # 调用函数得到结果。原创 2024-07-20 23:58:01 · 2261 阅读 · 1 评论 -
LLM应用构建前的非结构化数据处理(二)元数据的提取和文档切分
本节内容对元数据进行了学习,元数据对于文档数据的提取、文档的切分工作意义重大,但是也要注意,识别过程中可能会出现Title分类错误的问题,需要观察。原创 2024-07-09 18:03:44 · 831 阅读 · 0 评论 -
LLM应用构建前的非结构化数据处理(三)文档表格的提取
可以看到,非结构化数据识别还是有难度,不知道为什么,实验中部分识别结果是错的,如果追求准确性,还是得斟酌一下。原创 2024-07-09 23:35:02 · 790 阅读 · 0 评论 -
LLM应用构建前的非结构化数据处理(一)标准化处理认识数据
上述案例可以实现对非机构化文档的标准化,随后就可以对数据进行愉快的处理了。课程具体学习地址见参考链接1。原创 2024-07-09 15:45:16 · 769 阅读 · 0 评论 -
LangChain学习之Agent的相关操作
在LangChain for LLM应用程序开发中课程中,学习了LangChain框架扩展应用程序开发中语言模型的用例和功能的基本技能,遂做整理为后面的应用做准备。。原创 2024-06-05 18:15:35 · 804 阅读 · 0 评论 -
LangChain学习之Evaluation的相关操作
在LangChain for LLM应用程序开发中课程中,学习了LangChain框架扩展应用程序开发中语言模型的用例和功能的基本技能,遂做整理为后面的应用做准备。。原创 2024-06-05 14:51:29 · 599 阅读 · 0 评论 -
LangChain学习之 Question And Answer的操作
Q&A可以用一行代码完成,也可以把它分成五个详细的步骤,可以查看每一步的详细结果。五个步骤可以详细的让我们理解到它底层到底是如何执行的。此外,参数还有其他三种,可以根据实际情况选取合适的参数,另外三种如图,有需要可以根据实际情况选取合适的参数进行实验。原创 2024-06-04 22:02:09 · 1152 阅读 · 0 评论 -
LangChain学习之Chains的执行过程
chain这个例子还有些模糊,需要自己动手实践,特别是RouterChain,看的还有些头大,再接再厉。原创 2024-06-03 22:19:37 · 763 阅读 · 0 评论 -
LangChain学习之四种Memory模式使用
在LangChain for LLM应用程序开发中课程中,学习了LangChain框架扩展应用程序开发中语言模型的用例和功能的基本技能,遂做整理为后面的应用做准备。。原创 2024-06-02 21:19:10 · 844 阅读 · 0 评论 -
LangChain学习之prompt格式化与解析器使用
Tough luck!See ya!""" # 继续使用前面定义的prompt_template,占位符用参数填充 service_messages = prompt_template . format_messages(style = service_style_pirate , text = service_reply) print(service_messages [ 0 ] . content)text: ```See ya!```原创 2024-06-02 17:37:41 · 1603 阅读 · 0 评论 -
chatgpt之api的调用问题
先写一个测试样例运行后,出现如下报错。原创 2024-05-31 10:14:33 · 2754 阅读 · 0 评论 -
OpenAI的API代码测试
为什么要让看官方文档和账户余额,是因为调用API时候,使用的token是收费的。最简单的方式就是充值购买token,或者使用免费的API。代码可以成功运行,可以愉快体验了。原创 2024-05-28 10:07:42 · 1592 阅读 · 0 评论 -
OpenAI调用API实践总结
最简单的方式就是充值购买token,又或者找到伟大的公益项目,免费使用ChatGPT API。切记key生成只显示一次,请妥善保存,如果没记录下来,那就只能删除重建了。授权成功后请妥善保存,该key无需代理。运行通过,可以愉快体验了。原创 2024-05-28 09:10:30 · 1146 阅读 · 0 评论 -
AI Agent(LLM Agent)入门解读
AI Agent可以理解为一个智能体,包括感知模块、规划决策模块和行动模块,类似于人类的五官、大脑和肢体。它能帮助人类处理复杂的任务,并能根据环境反馈进行学习和调整。五官可以理解为感知模块,大脑为规划决策模块,肢体是行动模块。如图:**举个例子:**用手摸了一下电线,感知模块被电麻了,此时大脑决策规划模块发出信号,把手拿走快逃。接着行动模块控制手从电线上拿开(当然也可能拿不开),这就是资料里常见的模型。将这个过程抽象出来,如图:可以看到,最关键的部分就是大脑部分,即规划决策模块。原创 2024-03-27 23:00:56 · 3151 阅读 · 0 评论 -
大语言模型(LLM)token解读
Token是LLM处理文本数据的基石,它们是将自然语言转换成机器可理解格式的关键步骤。标记化过程(Tokenization):这是将自然语言文本分解成token的过程。在这个过程中,文本被分割成小片段,每个片段是一个token,它可以代表一个词、一个字符或一个词组等。变体形式:根据不同的标记化方案,一个token可以是一个单词,单词的一部分(如子词),甚至是一个字符。例如,单词"transformer"可能被分成"trans-", “form-”, "er"等几个子词token。原创 2024-03-27 09:44:28 · 5647 阅读 · 0 评论 -
大语言模型(Large Language Model,LLM)简介
它是一种基于深度学习的人工智能模型,它从大量来自书籍、文章、网页和图像等来源的数据中学习,以发现语言模式和规则,如处理和生成自然语言文本。通常,大语言模型含数百亿(或更多)参数。原创 2024-03-24 15:30:50 · 3978 阅读 · 0 评论