机器学习
文章平均质量分 74
l8947943
如果生命不是为了好玩,那还有什么意义。
展开
-
机器学习经典博客整理,一读就懂的深度好文
机器学习等深度好文总结原创 2023-02-25 22:28:40 · 249 阅读 · 0 评论 -
logistic回归、lasso回归、ridge回归、Elastic Net回归之间的总结
回归分析是一种预测性的建模技术,它研究的是因变量(目标)和自变量(预测器)之间的关系。这种技术通常用于预测分析,时间序列模型以及发现变量之间的因果关系。原创 2023-02-08 17:02:42 · 12218 阅读 · 0 评论 -
知识图谱常用评价指标:MRR,MR,HITS@K,Recall@K,Precision@K
MRR的全称是Mean Reciprocal Ranking(排名的倒数),其中Reciprocal是指“倒数的”的意思。该指标越大越好(即预测排名越靠前,倒数就越大,求和结果越大越好)。MRR=∣S∣1∑i=1∣S∣ranki1=∣S∣1(rank11+rank21+⋅⋅⋅+ranki1)其中S是三元组集合,∣S∣是三元组集合个数,ranki。原创 2022-11-14 10:43:01 · 19221 阅读 · 12 评论 -
Papers with Code一个查找论文和对应代码的神器
Papers with Code 是一个包含机器学习论文及其代码实现的网站。大多数论文都是有GitHub代码的,这个网站很牛逼的地方就是对机器学习方向做了任务分类,检索对应的论文、数据、代码和精度榜单一目了然。妈妈再也不用担心我们复现代码难了!!!网站地址:https://paperswithcode.com/点击Browse State-of-the-Art进行查看最近的文章,网页会按照方向分类好,如图:比如想查找GCN论文,搜索简称或者论文名即可检索,回显内容有简介、论文地址、还有对应的代码,如图:原创 2022-11-13 09:49:58 · 36574 阅读 · 7 评论 -
分类之混淆矩阵(Confusion Matrix)
为什么时隔多年又再做一次混淆矩阵的整理,TMD就是每次用的时候要自己回过头查一遍,老是记不住,为了打好基础,再次进行梳理。原创 2022-10-27 19:11:40 · 1500 阅读 · 0 评论 -
机器学习之核函数的理解与常见核函数
最早的分类问题是线性分类,因此仅靠一条线可以进行划分。如图:但是对求解非线性问题,则是通过某种非线性变换φ(x),将输入空间映射到高维特征空间,从而找到一个超平面进行分类。其实在svm中,就用到了核函数的思想,为了更清晰的呈现,特意去找了个视频:核函数思想摘自好了,看完视频,我们也知道了其实对于不可分的平面,在支持向量过程中,采用的是通过映射到高维空间后,从而可以形成一个超平面,最终实现了超平面分类。即。原创 2022-10-25 23:13:55 · 4335 阅读 · 0 评论 -
7种常见的迁移学习(搬运,感觉内容不错)
原文链接:https://cloud.tencent.com/developer/news/363386. Domain Adaptation 领域自适应1.1 动机领域自适应是一种迁移学习,它将不同源领域的数据或特征映射到同一个特征空间,以便于利用其源领域数据或特征来增强目标领域的训练,进而达到更好的训练效果。领域自适应学习不要求训练数据和测试数据一定具有相同的分布。1.2 目......转载 2019-10-18 16:01:36 · 25792 阅读 · 0 评论 -
机器学习(周志华)4.1-4.1习题解答
4.1 题:试证明对于不含有冲突数据(即特征向量完全相同但标记不同)的训练集,必然存在与训练集一致(即训练误差为0)的决策树。 答:根据决策树学习基本算法可知: 1.当前节点包含的样本全属于同一类别,无需划分 2.当前属性集为空,或者样本所有属性上取值相同,无法划分 故若两个特征向量完全相...原创 2018-04-13 11:04:52 · 3889 阅读 · 0 评论 -
机器学习(周志华)2.1-2.9习题解答
2.1 题: 数据集包含1000个样本,其中500个正例,500个反例,将其划分为包含70%样本的训练集和30%样本的测试集用于留出法评估,试估算共有多少种划分方式。 答:留出法将数据集划分为两个互斥的集合,为了保持数据的一致性,应该保证两个集合中的类别比例相同(定义要求)。故可以用分层采样的方法。训练集包含350个正例与350个反例,测试集包含150个正例与150个反例。...原创 2018-04-06 21:26:49 · 15274 阅读 · 0 评论 -
周志华机器学习第一章绪论习题1.1
问题:1.1 表1.1中若只包含编号为1和4的两个样例,试给出相应的版本空间编号色泽根蒂敲声好瓜1青绿蜷缩浊响是4乌黑稍蜷沉闷否假设空间:问题所有可能出现的情况组成的空间。版本空间:与训练集正例相符合的假设空间。 观察上述表格,可知色泽、根蒂、敲声分别含有两种属性,再加上各自的通配符(*),故上述数据集假设空间大小为 (2+1)*(2+1)*(2+1)= 27,加上一...原创 2018-04-03 17:59:24 · 1012 阅读 · 0 评论 -
机器学习(周志华)3.1-3.1习题解答
3.1 题:试分析在什么情况下f(x) = Wt x + b 中不用考虑偏置项b。 答:类比与平面直线方程,b相当于自变量取值为0,因变量的值。当只需要考虑x的取值对y的影响的话,则可以不用考虑b。...原创 2018-04-11 11:48:34 · 3547 阅读 · 0 评论