编程语言中运算符的运算效率
版权声明:本文为CSDN博主「白萝卜blb」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/morgerton/article/details/64918560
原文链接:https://blog.csdn.net/morgerton/article/details/64918560
在使用各种计算机语言编程时,同一种问题可能有好几种解决方案,比如在使用取余运算符时,‘%’操作符和‘ - ’操作符其实使用样的效果,结果都一样,用那种效率比较好?
摘自:
http://wenku.baidu.com/link?url=B89DssVNk7J3hGvkt97JU_50kQu-qn6aUdpeUd2dzh2hTBeUt-b6oLH44K-bRah-g95dhH-zzBwkdxioX6jgwXaEmUPczatrnsS_flzEYS_
我们就从代码细节与算法设计两方面,比较不同程序执行时间的异同,从而选择其中较优的算法,提高程序运行效率。
本试验所采用的环境是: CPU Celeron 3.06GHz,内存248M,操作系统Windows XP SP2,程序语言C。编译环境Dev-c++。以下称为1号机。配置略好于NOIP标准测试机CPU 2.0GHz。
一、基本运算的速度
为了增强算法效率的计算准确性,我们采用重复试验20次取平均值的做法。每次试验运行100000000次。
基本运行时间,是指在准备计算的运算复杂度之外,只包括循环控制变量的加减与比较所消耗的时间。要从实际运行时间中减去基本运行时间,才是这种
运算真正的运行时间,称为净运行时间。
#include<stdio.h>
main() {
int i,j;
double a,b,sum=0;
for(j=0;j<20;j++)//此处为进行20次试验设置的循环
{ //此处添加随机数产生
a=clock();//时间a
for(i=0;i<100000000;i++);
//此处添加运算,执行100000000次i+1
b=clock();//时间b
printf("%lf\n",b-a);//输出两个时间的差值
sum+=b-a;//20次基本运算使用总时间
}
printf("ans = %lf",sum/20.0);//输出平均时间
getch();
}
运行平均时间是:202.3ms。
(1)赋值运算,净运行时间0.8ms,与基本运行时间202.3ms相比,可忽略不计,故以后将赋值运算作为基本运行时间的一部分,不予考虑。
(2)加法运算,产生随机数: x=rand();y=rand(); 循环内加法:t=x+y; 下面的各种简单运算只是更改运算符即可,不再写出代码。
净运行时间41.45ms,即:在1s的时限中,共可进行 (1000-202.3)/ 41.45*10^8=1.9*10^9次加法运算,即:只通过循环、加法和赋值的运算次数不超过1.9*10^9.。而应用+=运算,与普通加法时间几乎相同,所以+=只是一种方便书写的方法,没有实质效果。同样的,各种自运算并不能提高效率。
(3)减法运算(x-y),净运行时间42.95ms,与加法运算基本相同。可见,在计算机内部实现中,把减法变成加法的求补码过程是较快的,而按位相加的过程占据了较多的时间,借用化学中的一句术语,可以称为整个运算的“速控步”。当然,这个“速控步”的运行速度受计算机本身制约,我们无法优化。在下面的算法设计中,还会遇到整个算法的“速控步”,针对这类情况,我们要对占用时间最多的步骤进行细心优化,减少常数级运算次数。
(4)乘法运算(x*y) 净运行时间58.25ms,明显比加减法要慢,但不像某些人想象的那样慢,至少速度大于加减法的1/2。所以在实际编程时,没有必要把两个或三个加法变成乘法,其实不如元素乘常数来得快。不必“谈乘色变”,实际乘法作为CPU的一种基本运算,速度还是很快的。以上四种运算速度都很快,比循环所需时间少很多,在普通的算法中,每个最内层循环约含有4-5个加、减、乘运算,故整个算法的运行时间约为循环本身所需时间的2倍。
(5)除法运算(x/y) 净运行时间1210.2ms,是四种常规运算中最慢的一种,耗时是加法的28倍,是乘法的21.5倍,确实如常人所说“慢几十倍”,一秒的时限内只能运行8.26*10^7次,不足一亿次,远大于循环时间。所以,在计算时应尽量避免除法,尤其是在对时间要求较高的内层循环,尽量不安排除法,如果整个循环中值不变,可以使用在循环外预处理并用一个变量记录,循环内再调用该变量的方法,可以大大提高程序运行效率。
6)取模运算(x mod y) 净运行时间1178.15ms,与除法运算速度几乎相当,都非常慢。
所以,取模运算也要尽量减少。在大数运算而只要求求得MOD N的值的题目中,应尽量利用数据类型的最大允许范围,在保证不超过MAXINT的前提下,尽量少执行MOD运算。例如在循环数组、循环队列的应用中,取模运算必不可少,这时优化运算便十分重要。可利用计数足够一定次数后再统一MOD,循环完后再MOD,使用中间变量记录MOD结果等方法减少次数。 在高精度计算中,许多人喜欢边运算边整理移位,从而在内层循环中有除、模运算各一次,效率极低。应该利用int的数据范围,先将计算结果保存至当前位,在各位的运算结束后再统一整理。
确实存在算法符号效率的问题,但是现在再重新计算下,测试代码如下:
class TestSymbol
{
public static void main(String[] args)
{
long source = 1345634571234556l;
long source_after = 1200000000000000l;
long length = 40;
long[] timeSub = new long[40];
for(int i = 0; i < 40; i++){
long start = System.currentTimeMillis();
long outCome = source / source_after;
long end = System.currentTimeMillis();
timeSub[i] = end - start;
System.out.println("result:" + timeSub[i] + ", start:" + start + ", end:" + end);
}
long result = 0;
for(int i = 0; i < timeSub.length; i++){
result = result + timeSub[i] / length;
}
System.out.println("% time sub result:" + result);
long[] timeSub_ = new long[40];
for(int i = 0; i < 40; i++){
long start = System.currentTimeMillis();
long outCome_ = source - source_after;
long end = System.currentTimeMillis();
timeSub_[i] = end - start;
System.out.println("result_:" + timeSub_[i] + ", start:" + start + ", end:" + end);
}
long result_ = 0;
for(int i = 0; i < timeSub.length; i++){
result_ = result_ + timeSub_[i] / length;
}
System.out.println("- time sub result:" + result_);
System.out.println("Hello World!");
}
}
代码大概的意思就是说取一个很大的long类型的数,依次执行‘-’和‘%’操作,求一下时间差的平均值,
结果看图:
后来我又分别试了*,/符号,发现执行结果都是这样。
做这个测试的目的就是因为我做的东西里面需要高频,大量的操作,我把'%' 改成了'-'解决了一些问题,所以特意测试下,结论如下:
在当前CPU这么NB的时代,这样执行是没有任何响应时间差别的,但是呢,如果持续的高频大量的操作,就会有问题了,比如一般的明显效率对比:- 肯定比 % 快,位操作肯定比 + ,-,*,/快,所以建议使用如果环境所迫,最好使用效率相对较高的运算符。