注意,这个是不定积分,表示的是函数下的面积
注意,下面这个是定积分,表示的是函数区间下的面积
总结来说,原函数的存在性主要取决于函数的连续性。如果函数在某个区间上除了有限个点外都连续,那么原函数可能仍然存在。然而,如果函数在区间上有密集的不连续点,特别是无穷间断点,那么原函数可能不存在。
导数是微积分中的一个基本概念,用来描述函数在某一点处的瞬时变化率。一个函数在某点的导数存在,意味着该点处的函数图像具有切线,即函数在该点的局部行为可以用线性函数来近似。
导数存在的条件:函数在点a处存在导数,通常需要函数在该点附近是连续的,并且变化率是“平滑”的,没有尖点或断点。如果函数在a点不连续,或者在a点附近有尖点(即函数图像在该点处有尖角),则导数可能不存在。
导数与连续性的关系:虽然一个函数在某点可导,通常意味着它在该点连续,但存在一些特殊情况,如某些分段函数,它们在某些点可导但不可微。然而,如果一个函数在某点连续,并不能保证它在该点可导。
总结来说,导数的存在性要求函数在该点附近的行为是“平滑”的,没有尖点或不连续点。如果存在第一类间断点或无穷间断点,这通常意味着函数在该点附近的行为不符合导数存在所需的平滑性条件,因此导数在这些点上不存在。
原函数,导数,积分,变限积分的转化
先导后积和先积后导
因为后积的积分号需要+c所以第一个式子积分在外层的有+c
而先积后导,积的+c会被求导约掉
这个讲的是,甲对乙积分,得到丙
丙对乙微分,得到甲