题目
分析
Kamal
需要从Dinajpur
步行到Chittagong
,路途中总共有N
个路口、R
条路(即某路口到某路口有路),问是否存在这样一条路线,能不重复的往返走完全部的路。
把路口视为点,把路视为边,这是一题典型的欧拉回路问题,有这样的推论。
无向图G具有一条欧拉回路,当且仅当G是连通的,并且所有结点度数全为偶数。
所以,关键在于如何实现判断(1)连通(2)偶数结点度数。
思路
- 首先考量相对简单的条件(2),对于每一条路,开辟一个度数数组
deg
,取每一条路连接的路口,将其对应度数增加。接着只需要遍历所有的结点度数,如果有非偶数度数的结点,即不存在欧拉回路。
注意,本题样例可能设有孤立点(度数为0)。 - 其次考量条件(1),判断一个图是否连通,这里可以考量使用
dfs
深搜这张图,或者使用并查集
搜索这张图检查是否连通。这里采用了并查集的方式检查是否连通。 - 下面给出一些普通的测试样例仅供测试。
样例
INPUT
3 2
0 1
1 02 2
1 0
1 04 4
0 1
1 0
2 3
3 25 6
0 1
1 0
2 3
2 3
0 2
2 04 6
1 2
2 1
2 3
2 3
3 1
1 32 0
3 2
1 2
1 22 2
0 0
1 1
OUTPUT
Possible
Possible
Not Possible
Possible
Possible
Not Possible
Possible
Possible
代码
#include <cstdio>
#define N 200+5
int set[N], deg[N], n, r;
int find(int i)
{
return (i == set[i]) ? i : set[i] = find(set[i]);
}
bool solve()
{
if (r < 2 || n == 0) return false;
int t = find(0);
for (int i = 0; i < n; i++)
if (deg[i])
if (t != find(i) || deg[i]&1) return false;
return true;
}
int main()
{
while (~scanf("%d%d", &n, &r)) {
for (int i = 0; i < n ; i++) {
set[i] = i;
deg[i] = 0;
}
int m, n;
for (int i = 0; i < r; i++) {
scanf("%d%d", &m, &n);
set[find(m)] = find(n);
deg[m]++;
deg[n]++;
}
printf(solve() ? "Possible\n" : "Not Possible\n");
}
return 0;
}