《Effective Modern C++》Item 3: Understand decltype.

引子

decltype是C++中的一个老特性了,绝大多数情况它会让你获得你期望的类型。当然,凡事都有特例,我们需要稍微注意一下,除了避免踩坑以外,也能帮助我们进一步了解类型推导。

正文

1.普通情形

我们先预热一下,看看decltype确实是大部分时候是符合预期的:

const int i = 0;                // decltype(i) is const int

bool f(const Widget& w);        // decltype(w) is const Widget&
                                // decltype(f) is bool(const Widget&)

struct Point {
  int x, y;                     // decltype(Point::x) is int
};                              // decltype(Point::y) is int

Widget w;                       // decltype(w) is Widget

if (f(w)) ...                   // decltype(f(w)) is bool

template<typename T>            // simplified version of std::vector
class vector {
public:
  ...
  T& operator[](std::size_t index);
  ...
};

vector<int> v;                  // decltype(v) is vector<int>
...
if (v[0] == 0) ...              // decltype(v[0]) is int&

2.保留引用属性

如果只有这些内容,也没必要单独开一篇文章了。为了展示更多的内容,我们考虑一个特殊的应用场景:某个函数传入一个container和下标,我们希望在函数末尾返回这个下标所指的值并保留其类型。这是由于operator[]会返回引用类型,我们希望在访问这个元素完毕后,返回的类型仍然是引用类型,这样方便我们进一步对其进行赋值。先给出一个可行的例子:

template<typename Container, typename Index> 
auto authAndAccess(Container& c, Index i) -> decltype(c[i])
{
  authenticateUser();
  return c[i];
}

这里箭头是C++11中的trailing return type,但是这不是我们本文的要点,读者可自行谷歌了解。在上面的写法中,我们会得到我们希望的类型,即c[i]返回的类型——引用类型。

在C++14中,我们有了新的写法:

template<typename Container, typename Index>
decltype(auto)
authAndAccess(Container& c, Index i)
{
  authenticateUser();
  return c[i];
}

但是需要注意的是,上面的decltype(auto)不能替换成auto。原因正如我们Item 2中所讲的,如果使用auto,我们会用模板类型推导规则去推导auto的类型,这样会丢失掉引用属性。

这里decltype(auto)保留参数完整类型的特性不仅仅可以用在函数返回值,在普通的变量声明中也有类似的性质:

Widget w;
const Widget& cw = w;

auto myWidget1 = cw;            // auto type deduction: myWidget1's type is Widget

decltype(auto) myWidget2 = cw;  // decltype type deduction:
                                // myWidget2's type is const Widget&

那么上面的样例是不是最终我们需要的代码呢,答案是否定的。前面传入的参数都是lvalue,如果我们传入rvalue会出现错误,因为rvalue没法赋予给一个引用,故无法通过编译。但是好在我们有universal引用,即T&&,它即可接受lvalue也可以接受rvalue。

在引入了universal引用后,我们还需要再做一点优化,尽管它不属于decltype的范畴,但是我们这里利用了std::forward来实现引用的完美转发,原因我们在后面的文章会经一步介绍。

所以最后我们C++14的代码版本为(C++11类似,但稍微麻烦点):

template<typename Container, typename Index>
decltype(auto) 
authAndAccess(Container&& c, Index i)
{
  authenticateUser();
  return std::forward<Container>(c)[i]; 
}

3.处理表达式时的例外

看到这里,你会发现确实如文章开头所说,decltype表现出了优秀的特性:它保留了变量的原有属性,没有任何修改。

但是凡事都有例外,即在处理类型为T的lvalue的表达式时,decltype返回的结果为T&。这在大多数时候没什么问题,因为lvalue本身就内涵了它的引用。但是考虑下面的代码:

decltype(auto) f1() 
{
  int x = 0; 
  ...
  return x;             // decltype(x) is int, so f1 returns int
}

decltype(auto) f2() {
  int x = 0;
  ...
  return (x);           // decltype((x)) is int&, so f2 returns int&
}

你会发现,f2()返回值居然是一个本地变量的引用,这在C++中将出现undefined的行为,仅仅可能因为你最后手误多打了个括号。

所以decltype是一把双刃剑,大多数时候能帮我们解决问题,但是偶尔也会挖坑给用户。

总结

最后还是文章末尾S.M.老爷子的tips:

1.decltype几乎总是返回变量或者表达式本身的类型,而不做任何修改
2.对于一个类型为T的lvalue表达式(而不是名字),decltype则会返回T&
3.C++14中支持decltype(auto),它也会做类型推导,但是应用的是上面decltype的规则。

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值