目录
题目
给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例 1:
输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。
示例 2:
输入:nums = [1]
输出:1
提示:
1 <= nums.length <= 3 * 104
-105 <= nums[i] <= 105
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/maximum-subarray
思路(错)
dp[i]为只考虑前i个数时的连续子数组的最大和,最终结果为dp[n-1]
i | 0 | 1 | 2 | 3 |
---|---|---|---|---|
nums | -2 | 1 | -3 | 4 |
dp | -2 | 1 | 1 | 4 |
状态之间无法转移,即dp[i]不能由dp[0]...dp[i-1]表示
思路
dp[i]为以nums[i]结尾的连续数组的最大和,最终结果为max(dp[i]),0<=i<n。
i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|---|
nums | -2 | 1 | -3 | 4 | -1 | 2 | 1 | -5 | 4 |
dp | -2 | 1 | -2 | 4 | 3 | 5 | 6 | 1 | 5 |
加上“以nums[i]”结尾之后,就可以划分子问题了,划分为以nums[i]结尾,连接前面的以及不连接前面的仅nums[i]。如果dp[i-1]>0的话,连上前面的会更大,所以
dp[i] = dp[i-1]+nums[i], dp[i-1]>0
dp[i] = nums[i],dp[i-1]<=0
代码
class Solution:
def maxSubArray(self, nums: List[int]) -> int:
dp, res = nums[0], nums[0]
if len(nums) == 1:
return dp
for num in nums[1:]:
if dp > 0:
dp = dp + num
else:
dp = num
res = max(res, dp)
return res
结果
更多内容:OJ网站题目分类,分难度整理笔记(leetcode、牛客网)
更多python相关内容:【python总结】python学习框架梳理
喜欢本文的请动动小手点个赞,收藏一下,有问题请下方评论,转载请注明出处,并附有原文链接,谢谢!如有侵权,请及时联系。如果您感觉有所收获,自愿打赏,可选择支付宝18833895206(小于),您的支持是我不断更新的动力。