自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(758)
  • 收藏
  • 关注

原创 基于深度学习的高光谱图像分类

本研究设计的网络首先将输入的三维高光谱图像块通过两次不同尺寸卷积核的卷积操作,分别提取不同感受野范围的特征表示,这种多尺度特征提取策略能够捕获从细粒度到粗粒度不同层次的图像信息。经过注意力模块增强后的特征进行降维处理,将三维特征映射为二维特征表示,然后将不同尺度分支的二维特征进行拼接融合,使网络最终获取到融合了多层次空谱信息的有效特征表示,提高了分类的准确性和鲁棒性。尽管基于卷积神经网络的高光谱分类方法取得了良好的效果,但卷积操作本质上是基于局部感受野的特征提取方式,难以有效建模长距离的上下文依赖关系。

2026-01-18 15:17:48 120

原创 基于四目视觉的不均匀插值与深度学习图像拼接方法

传统的图像拼接方法严重依赖于特征点检测和匹配过程,要求拼接场景中的特征点密集且分布均匀,当场景中存在弱纹理区域、重复纹理或运动模糊等情况时,特征点的检测和匹配往往会失败,导致拼接结果出现重影或错位等质量问题,鲁棒性较差。针对传统方法和现有学习方法的局限性,本研究开展了基于深度学习的图像拼接算法研究。首先,针对深度学习图像拼接研究中训练数据不足的问题,本研究利用四目视觉实验平台采集了大量的圆柱周标图像,并通过人工标注和数据增强等手段构建了专门的图像拼接数据集,为深度学习模型的训练提供了充足的数据支撑。

2026-01-18 15:16:09 110

原创 基于深度学习的通信信号调制方式自动识别算法

该轻量网络通过精简的网络架构设计和高效的注意力计算方式,在大幅降低模型参数量和计算量的同时,仍然保持了与先进方法相当的识别性能,成功实现了识别精度与计算效率之间的有效平衡。更为关键的问题是,当实际应用场景中的信号数据分布特征与训练数据存在差异时,已经训练好的网络模型可能出现严重的性能退化,这一现象被称为域偏移问题。本研究设计了专门的域自适应训练策略,在保留源域判别性特征的同时,学习源域与目标域之间的不变特征表示,从而使模型能够适应目标域的数据分布特点。✅ 成品或定制,查看文章底部微信二维码。

2026-01-18 15:15:29 107

原创 基于深度学习的肺炎诊断模型

统计检验结果表明,该深度学习算法对细菌性肺炎和病毒性肺炎的诊断性能显著优于具有3年和7年诊断经验的放射科医生,整体诊断水平与具有7年经验的中级放射科医生相当,这一结果验证了深度学习辅助诊断工具在肺炎分类任务中的实际应用潜力。在影像模型的构建中,本研究选用ResNet-18作为特征提取的骨干网络,首先在大规模自然图像数据集上进行预训练,然后在肺炎数据集上进行微调,提取全连接层输入的512维深度特征,再通过特征降维和机器学习分类器构建最终的影像模型。融合模型通过逻辑回归将影像模型和临床模型的预测得分进行整合。

2026-01-18 15:14:06 435

原创 基于深度学习的注塑工件表面缺陷检测

考虑到注塑工件通常具有复杂的三维几何形状,单一视角的相机难以完整覆盖工件的全部表面区域,本研究设计了多工位视觉检测系统,通过在不同方位布置多个工业相机,实现对注塑工件上方、下方和四周等多个表面区域的同步图像采集,确保缺陷检测的全面性和完整性。随后,使用专业的图像标注工具对所有包含缺陷的图像进行精确的边界框标注,制作成符合深度学习目标检测任务要求的标准数据集,并按照训练集、验证集和测试集六比二比二的比例进行划分,为后续深度学习模型的训练和评估奠定了坚实的数据基础。✅ 成品或定制,查看文章底部微信二维码。

2026-01-18 15:13:22 235

原创 致密储层压裂效果评价深度学习方法【附代码+数据】

然而,现有的数据处理方法在很大程度上依赖于处理参数的人工选取,不同的参数设置可能导致显著不同的解释结果,易受到人为主观因素的影响,而且需要投入大量的人力和时间成本进行数据的手动处理和分析。在开展深度学习研究之前,首要解决的问题是训练数据的获取。实验结果表明,基于深度学习的致密储集层压裂效果评价方法是切实可行的,其中残差网络的残差连接机制特别适合处理本研究的声波测井数据,取得了较高的评价精度,而融合注意力模块后的模型通过自适应调整特征通道权重,进一步提升了评价的准确性,达到了最优的性能表现。

2026-01-18 15:09:10 100

原创 深度光流学习粒子图像测速算法研究

在速度场计算网络的设计上,本研究以前述的轻量级光流模型架构为基础,对其输入端进行了改进,使其能够接受经过分割处理的双输入图像,并提出了相应的双路径特征编码方案。改进后的网络能够有效利用分割得到的掩膜信息,在计算液相区域速度场时自动忽略非液相区域的影响,避免了边界区域的计算误差传播。实验结果表明,本研究提出的级联深度学习框架能够准确地对包含遮挡结构物的图像进行液相区域分割和提取,并在提取的液相区域内实现高精度、高空间分辨率的速度场计算,为复杂测量环境下的流场测量提供了自动化的解决方案。

2026-01-18 15:08:28 101

原创 深度学习乳腺癌淋巴结转移与HER2评估【附源码模型】

为了辅助病理医生提高诊断效率和准确性,本研究建立了基于深度学习的前哨淋巴结转移灶自动识别模型。随后,将勾画好的数字病理切片裁剪为固定分辨率的小块图像,并采用先进的染色标准化方法对所有图像进行颜色归一化处理,消除不同切片之间由于染色条件差异造成的颜色变异,使得模型能够学习到与染色无关的组织形态学特征。然而,在日常的病理诊断工作中,HER2的评估主要依赖病理医生对免疫组化染色结果的判读,这一过程不仅繁琐耗时,而且具有较高的主观性,不同医生对同一切片的判读结果可能存在差异,影响了诊断的一致性和可靠性。

2026-01-18 15:07:56 89

原创 基于深度学习实现透过动态厚散射介质成像

现有的散射介质成像方法主要包括基于传输矩阵测量的方法和基于光学记忆效应的方法等,这些方法在处理静态薄散射介质时取得了一定的成功,但当面对动态变化且厚度较大的散射介质时,由于散射过程的复杂性和时变特性,上述方法的有效性受到严重限制,难以满足实际应用的需求。动态散射介质容器是该实验系统的关键部件,本研究采用可控浓度的悬浊液作为散射介质,通过调节悬浊液中散射粒子的浓度可以改变散射强度,通过调节容器的厚度可以改变光波经历的散射次数,通过磁力搅拌装置可以使悬浊液产生可控的流动从而模拟动态变化效果。

2026-01-18 15:07:04 234

原创 基于深度学习的轮胎缺陷智能无损检测

实验结果表明,本研究提出的跨层次多向特征融合金字塔网络在平均精度指标上取得了显著提升,其中在0.5到0.95交并比范围内的平均精度提高了2.08%,在0.5交并比阈值下的平均精度提高了2.4%,更重要的是显著降低了气泡缺陷的漏检率,证明了该方法在轮胎胎冠激光散斑图像气泡检测任务中的实际应用价值。轮胎X射线图像中的开根、稀线和气泡等缺陷则表现出目标与背景高度关联的特性,即缺陷的判定需要充分结合周围背景区域的信息才能做出准确的判断,这对检测算法的上下文理解能力提出了较高的要求。✅ 专业定制毕设、代码。

2026-01-18 15:06:27 208

原创 基于多特征融合的深度学习高速铁路预售期购票量预测

LSTM层则利用其门控机制,对这些特征进行时序建模,捕捉购票量随时间演变的动态规律。这种“时空串联”的深度学习架构,有效地解决了传统时间序列模型(如ARIMA)无法处理非线性关系和多变量输入的缺陷,也弥补了单一LSTM模型在特征挖掘能力上的不足,实现了对购票量变化趋势的全面拟合。基于此,研究构建了包含历史销量、时间滞后特征、日历效应等多维度的特征向量,将原始的单一时间序列转化为富含上下文信息的多维张量,为后续深度学习模型的输入提供了高质量、高信息密度的特征基础,这是确保预测模型能够捕捉复杂市场规律的前提。

2026-01-18 15:02:57 332

原创 基于深度学习的信道编码识别与扰码分析【附完整代码】

这一成果打破了传统方法对先验知识的依赖,证明了深度特征提取网络在处理一维通信信号时的强大表征能力,为后续的参数估计奠定了坚实的分类基础。该框架设计了一个共享的特征提取主干网络,用于捕捉信号的通用底层特征,随后分叉出两个独立的分支网络,分别用于纠错编码类型的识别和交织类型的识别。这种方法的优势在于它模拟了人类同时处理关联任务的认知机制,不仅减少了模型的参数总量和推理时间,还通过任务间的相互正则化作用提升了模型的泛化能力,使其在面对复杂多变的通信信号时更具鲁棒性。✅ 成品或定制,查看文章底部微信二维码。

2026-01-18 15:02:12 218

原创 基于可视分析技术的深度学习模型构建与优化【附源码】

✨ 本团队擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。(1)多层级可视化的深度学习模型构建体系 面对深度学习模型构建门槛高、理论知识要求严苛的现状,传统的代码编写方式或全自动搜索方式往往让初学者或跨领域研究者望而却步。为此,本研究创新性地引入了可视分析技术,设计了一套覆盖不同用户需求层次的模型构建方法论。首先,在底层逻辑上,开发了基于神经网络基本算子的可视化构建模式。用户可以通过拖拽、连接代表不同数学运算和层级结构的图形化算子,像搭积木一样从零开始组装网络,

2026-01-18 15:01:30 179

原创 基于深度学习的乳腺超声图像肿块分割

传统的卷积神经网络受限于较小的卷积核尺寸,往往难以在单一层级上获得足够大的感受野,导致对大尺度肿块或复杂边缘的拟合能力不足。该算法的核心在于利用新一代大核卷积网络(ConvNeXt)作为主干,通过增大卷积核的物理尺寸,直接扩大了特征提取的有效感受野,使得网络能够模拟人类视觉“一览无余”的感知方式。通过深度学习技术,模型能够自动、客观、稳定地勾画出肿块区域,这不仅极大地减轻了影像科医生的阅片负担,降低了因人为因素导致的漏诊和误诊率,更为后续的良恶性分类、定性诊断提供了标准化的感兴趣区域(ROI)。

2026-01-18 15:00:37 312

原创 脑磁共振多发性硬化智能识别深度学习方法【附代码】

实验结果证实,这种融合了注意力机制的2.5D网络架构,在自动分割任务中表现出了优于传统经典深度学习模型的性能,能够更准确地描绘出病灶的轮廓,为后续的鉴别诊断提供了高质量的量化基础数据。这种迁移学习方案不仅显著缩短了模型的收敛时间,更重要的是极大地提升了模型对稀疏、微小增强病灶的敏感度,证明了在医学影像分析中,利用相关任务的先验知识来辅助高难度任务是一种行之有效的解决方案,为临床医生捕捉微小病变提供了强有力的辅助工具。这种降维处理在保留关键解剖结构和病理特征的同时,大幅降低了数据的复杂度。

2026-01-18 14:59:43 380

原创 面向青光眼辅助诊断的深度学习方法【附源码+模型】

注意力机制的引入使得网络在处理多模态输入时不是简单地进行特征拼接或加权平均,而是能够根据具体病例的特点动态调整对不同模态信息的关注程度,当某一模态的信息较为明确时给予更高权重,当某一模态存在不确定性时则更多地参考另一模态的证据,这种机制更加符合临床医生的实际诊断思维方式。在来自多个眼科中心和多种光学相干断层扫描设备的数据上进行的实验验证表明,基于视野和光学相干断层扫描的多模态方法相比单模态方法取得了显著的性能提升,证明了多模态融合策略在青光眼诊断中的优越性。交互转换模块设计了一种新颖的多模态特征交互技术。

2026-01-18 14:59:12 410

原创 持续同调与深度学习3D点云分类方法【附代码】

这种协同集成的基本思路是保持原有深度学习网络的架构不变,将其作为提取几何和局部结构特征的主要模块,同时并行地利用多类型持续同调特征融合模型提取点云的全局拓扑特征,最后将两类特征在适当的层级进行融合,形成更加全面的特征表示用于最终的分类决策。在公开的ModelNet40三维形状数据集上的实验验证表明,融合了持续同调特征的改进模型相比原始的深度学习模型在分类精度上取得了明显的提升,这一结果有力地证明了持续同调特征与深度学习特征协同工作的可行性和有效性,为点云处理领域的研究开拓了新的技术方向。

2026-01-18 14:58:23 479

原创 遥感影像岩石信息提取深度学习方法【附代码】

Fisher Score是一种经典的特征重要性评估方法,其基本原理是度量每个特征对于区分不同类别的能力,具有较高Fisher分数的特征意味着在该特征上不同类别的样本分布差异明显,因此对分类任务具有较高的判别价值。在高分一号遥感卫星影像数据上的实验验证表明,与传统的单独使用mRMR、Fisher Score或ReliefF方法相比,本研究提出的联合优选方法在岩石信息提取任务中取得了更高的分类精度,同时显著减少了所需的特征数量和计算时间,证明了该方法在遥感图像自动分类应用中的实用价值和技术优势。

2026-01-18 14:57:50 544

原创 深度学习改善在线自适应放疗图像质量方法【附源码】

在自适应放疗流程中,对肿瘤靶区和危及器官的准确勾画是确保治疗效果的关键步骤,但传统的手工勾画方式耗时费力,严重影响了在线自适应治疗的实施效率,难以满足快速调整治疗计划的临床需求。监督学习方法通常需要配对的高质量参考图像进行训练,其优势在于能够学习到准确的图像映射关系,有效去除各类伪影,但在临床实践中难以获得与CBCT完全配对的高质量CT图像,这限制了监督学习方法的直接应用。针对这一问题,本研究提出了一种对放射治疗源散射进行物理建模的方法,通过在投影域对散射信号和噪声进行估计和去除,从而提高重建图像的质量。

2026-01-18 14:56:52 507

原创 基于深度学习的强度关联多光谱图像重建算法

差分鬼成像作为一种成熟的快速重建技术,能够在较短的时间内提供一个初步的图像估计,虽然这个初步结果可能包含一定的噪声和伪影,但它为后续的深度学习网络提供了有价值的先验信息和初始参考。基于GISC光谱成像系统采集的实验数据和ICVL高光谱图像数据集的验证结果表明,本研究提出的方法在图像重建质量方面取得了显著的提升,相比传统的U-Net系列网络架构,重建图像的峰值信噪比提高了1.1分贝以上,而与差分鬼成像和压缩感知等传统算法相比,这一指标的提升幅度更是达到了14分贝以上,充分证明了所提方法的有效性和优越性。

2026-01-18 14:55:09 634

原创 基于优化理论的相位恢复算法【附代码】

✨ 本团队擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。✅ 专业定制毕设、代码✅ 成品或定制,查看文章底部微信二维码。

2026-01-07 11:29:33 912

原创 改进生物地理学算法流水车间调度应用【附代码】

✨ 本团队擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。✅ 专业定制毕设、代码✅ 成品或定制,查看文章底部微信二维码。

2026-01-07 11:28:55 754

原创 多智能体协同算法的智能电网分布式调度【附代码】

✨ 本团队擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。✅ 专业定制毕设、代码✅ 成品或定制,查看文章底部微信二维码。

2026-01-07 11:28:04 854

原创 基于多目标粒子群算法的巨项目施工现场微型消防站选址优化【附代码】

✨ 本团队擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。✅ 专业定制毕设、代码✅ 成品或定制,查看文章底部微信二维码。

2026-01-07 11:27:08 795

原创 智能优化算法直线阵优化技术【附代码】

✨ 本团队擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。✅ 专业定制毕设、代码✅ 成品或定制,查看文章底部微信二维码。

2026-01-07 11:16:44 644

原创 启发式算法管道路径布局优化【附代码】

✨ 本团队擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。✅ 专业定制毕设、代码✅ 成品或定制,查看文章底部微信二维码。

2026-01-07 11:15:32 983

原创 H.266/VVC帧内编码算法优化【附代码】

✨ 本团队擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。✅ 专业定制毕设、代码✅ 成品或定制,查看文章底部微信二维码。

2026-01-07 11:13:39 873

原创 近端策略优化煤粉锅炉燃烧优化【附代码】

✨ 本团队擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。✅ 专业定制毕设、代码✅ 成品或定制,查看文章底部微信二维码。

2026-01-07 11:11:49 869

原创 改进黑猩猩优化结构损伤识别【附代码】

✨ 本团队擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。✅ 专业定制毕设、代码✅ 成品或定制,查看文章底部微信二维码。

2026-01-07 11:09:30 745

原创 决策变量分类动态多目标优化算法【附代码】

✨ 本团队擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。✅ 专业定制毕设、代码✅ 成品或定制,查看文章底部微信二维码。

2026-01-07 11:08:39 1013

原创 智能优化算法SOFC参数辨识【附代码】

本文将EMCO应用于SOFC的电化学模型(ECM)和简化电化学模型(SECM)的参数辨识中,利用三种不同规格(华中大、Elcogen、CEREL)的单体电池和三种堆栈电池的实验伏安特性数据进行了广泛验证。结果表明,EMCO在均方根误差(RMSE)指标上显著低于粒子群(PSO)、白鲨优化(WSO)等七种对比算法,展现了极高的辨识精度和普适性。在这个网络中,神经元的连接权重和偏置不再是无意义的数值,而是直接对应于SOFC模型中的待辨识参数(如交换电流密度、欧姆内阻、扩散系数等)。✅ 专业定制毕设、代码。

2026-01-05 11:41:47 499

原创 数据驱动SCR系统多目标优化【附代码】

该算法集成了分类回归树(CART)、随机森林(RF)、极值梯度提升(XGBoost)三种基于树模型的算法,并结合最大信息系数(MIC)进行相关性分析,筛选出对SCR出口NOx影响最大的特征子集,有效降低了模型输入的维数。针对脱硝反应过程中的化学反应滞后和管道传输延迟问题,以特征变量重构序列与目标变量之间的平均MIC值为优化目标,利用JAYA优化算法自动寻优各特征变量的最佳延迟时间,实现了建模数据集的时序重构。在准确预测的基础上,本文致力于解决SCR系统运行中经济性与环保性之间的矛盾。

2026-01-05 11:41:15 771

原创 多目标优化及偏好策略推荐算法【附代码】

通过计算初始种群中个体(推荐列表)之间的汉明距离和余弦相似度,强制生成一定比例的高差异化个体,从进化的起点就保证了种群在解空间中的广泛分布,从而在后续迭代中能够有效平衡推荐结果的准确性与新颖性。不同于传统的双亲本随机交叉,该算子在选择父代时,会根据用户偏好信息赋予那些在准确性指标上表现优异的个体更高的被选概率。这种策略实际上是在多目标优化的帕累托前沿搜索中引入了偏好压力,引导种群向着用户最关心的准确性区域偏移,同时利用多目标框架维持多样性指标不大幅下滑,实现了“鱼与熊掌兼得”的优化效果。

2026-01-05 11:40:41 542

原创 密度峰值聚类算法优化与实现【附代码】

密度峰值聚类算法(DPC)在处理低维数据时表现优异,但在面对高维复杂数据时,由于维数灾难的影响,数据点之间的距离趋于一致,导致局部密度计算失真,聚类中心变得模糊不清,极易引发错误分类。实验表明,该方法在处理人脸识别数据、基因表达数据等高维数据集时,不仅显著提高了聚类的准确率(Accuracy)和调整兰德系数(ARI),而且生成的簇结构更加紧凑,有效解决了高维空间下密度峰值算法失效的问题。通过迭代搜索,算法能够自动找到使聚类质量最优的截断距离参数,实现了算法的完全自适应,避免了人工试错的繁琐与偏差。

2026-01-05 11:40:10 870

原创 篮球联赛优化算法起重机模块化设计【附代码】

该策略通过计算当前精英个体的反向解,并同时评估正向解与反向解的适应度,择优进入下一代,从而有效扩展了搜索区域,增强了算法跳出局部极值陷阱的能力。最为关键的是,本文设计了一种迭代更新的自适应机制,该机制能够根据当前的迭代次数和种群适应度分布情况,动态调整算法的转移概率和步长参数。而在迭代后期,参数自适应收缩,使得算法能够聚焦于最优解附近的精细化搜索。计算结果显示,经过优化后的桥架结构在满足最大应力小于材料屈服极限、跨中最大挠度符合国家标准的前提下,主梁截面尺寸得到了合理缩减,整机桥架的自重实现了大幅度降低。

2026-01-05 11:39:44 617

原创 粒子群算法求解最优化问题及应用【附代码】

而CC-PSO/GA则采用协同进化框架,利用PSO处理连续变量,利用遗传算法(GA)处理离散变量,通过小种群协同交叉的方式实现了两种算法优势互补,在求解混合整数规划问题上展现了极高的求解效率和精度。同时,引入高斯变异增加稀疏区域的粒子密度,并提出了一种新的分布广度度量指标DM,有效评价了解集的覆盖范围。该算法利用PSO强大的全局搜索能力优化BP神经网络的初始权值和阈值,克服了BP算法易陷入局部最优、训练不稳定的缺点。在制造领域,针对多目标柔性作业车间调度问题(FJSP),提出了AMOPSO算法。

2026-01-05 11:31:00 416

原创 鲸鱼优化算法改进策略与应用【附代码】

利用混沌映射的随机性和遍历性生成初始种群,并计算其反向解,择优进入下一代,从而显著提高了初始解的质量和分布均匀性。Levy飞行具有长短步长交替的特性,能够对鲸鱼个体的更新位置进行随机扰动,这种突变机制有效增加了种群多样性,防止算法在迭代后期陷入局部最优。核心改进在于引入了“教与学”优化算法(TLBO)的教学策略,在WOA的包围猎物阶段,将当前最优个体作为“教师”,引导其他“学生”个体向其学习,这种机制强化了种群向最优区域的收敛趋势。此外,针对可能出现的早熟收敛,设计了带惯性权重的逐维柯西变异策略。

2026-01-05 11:30:28 705

原创 能耗优化WRSN充电规划算法【附代码】

JRDHCR算法采用动态簇半径的区域划分方法,根据节点距离Sink的远近自适应调整簇的大小,距离越近簇越小,从而减少簇内通信能耗,为长距离中继预留能量。实验表明,JRDHCR显著降低了网络整体能耗,有效缓解了热区效应,延长了网络在无充电介入情况下的基础寿命,为后续的充电规划奠定了良好的网络状态基础。第一层针对“簇间”规划,综合考虑簇的剩余能量、地理距离、节点密度等宏观指标,计算各簇的充电紧迫度;这种策略极大地提升了MC的移动路径收益比,减少了无效移动距离,实现了MC能量利用率与网络节点存活率的双重提升。

2026-01-05 11:29:57 353

原创 信息反馈多目标粒子群优化算法【附代码】

通过计算粒子间的互信息值,算法能够智能地为每个粒子分配差异化的权重,使得粒子在更新位置时能够更有针对性地借鉴那些与其具有高相关性的优秀个体的历史信息。该系统根据粒子的适应度变化率和多样性贡献等输入变量,利用一步预测策略快速估算反馈模型中的权重参数,从而在保证反馈有效性的同时大幅降低了计算时间,显著提升了算法的实时性。同时,竞争机制引入的随机性也在一定程度上增强了算法跳出局部最优的能力,特别是在处理具有多阈值图像分割等实际问题时,该策略能够快速收敛到Pareto前沿,获得高质量的分割阈值组合。

2026-01-05 11:29:26 300

原创 进化计算两阶段多模态优化算法【附代码】

在多目标多模态优化中,仅关注目标空间的Pareto前沿分布往往会导致决策空间中对应的多模态解(Pareto子集)丢失,即“多对一”映射中的“多”被忽略。因此,第二阶段引入了决策空间与目标空间的双重小生境策略,对第一阶段的存档集进行二次优化和微调。该策略通过同时计算个体在两个空间中的拥挤距离,动态调整淘汰机制,确保最终获得的解集不仅在目标空间均匀覆盖Pareto前沿,同时在决策空间也能完整保留所有的Pareto子集,有效解决了多模态多目标优化中两个空间性能难以兼顾的难题。✅ 专业定制毕设、代码。

2026-01-05 11:28:40 283

基于新闻共现与图神经网络的公司关系与股票预测研究,数据集

通过新闻共现关系构建公司之间的动态关联网络,结合图神经网络(GNN)技术进行股票价格预测。 数据集包含: 1)新闻数据,采集自主流财经媒体或公开的金融新闻语料库,涵盖特定时间段内与上市公司的相关报道,通过自然语言处理技术提取新闻中提到的公司实体及其共现关系;2)公司关系网络,以图结构形式表示,其中节点为公司,边为基于新闻共现频率或语义相关性计算的权重,网络随时间动态演变; 3)股票市场数据

2025-02-26

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除