📊 数据科学与大数据专业 | 数据分析与模型构建 | 数据驱动决策
✨ 专业领域:
-
数据挖掘与清洗
-
大数据处理与存储技术
-
机器学习与深度学习模型
-
数据可视化与报告生成
-
分布式计算与云计算
-
数据安全与隐私保护
💡 擅长工具:
-
Python/R/Matlab 数据分析与建模
-
Hadoop/Spark 大数据处理平台
-
SQL数据库管理与优化
-
Tableau/Power BI 数据可视化工具
-
TensorFlow/PyTorch 深度学习框架
✅ 大数据技术专业题目与数据
1. 数据收集与预处理
在构建基于机器学习的量化交易策略时,数据的质量和数量至关重要。本文首先从雅虎财经(Yahoo Finance)上爬取了自2013年6月1日至2021年6月10日间所有A股的日线行情数据,这些数据涵盖了开盘价、收盘价、最高价、最低价、成交量、换手率及复权因子等七个关键指标。为了确保所选股票具有代表性且符合沪深300指数成分股的标准,我们进一步筛选出曾进入过沪深300成分股名单的股票,最终得到约52万条有效记录。
- 数据来源