基于LightGBM和多模型融合的量化交易研究:沪深300为例【附代码】

   📊 数据科学与大数据专业 | 数据分析与模型构建 | 数据驱动决策

✨ 专业领域:

  • 数据挖掘与清洗

  • 大数据处理与存储技术

  • 机器学习与深度学习模型

  • 数据可视化与报告生成

  • 分布式计算与云计算

  • 数据安全与隐私保护


💡 擅长工具:

  • Python/R/Matlab 数据分析与建模

  • Hadoop/Spark 大数据处理平台

  • SQL数据库管理与优化

  • Tableau/Power BI 数据可视化工具

  • TensorFlow/PyTorch 深度学习框架

大数据技术专业题目与数据

数据科学与大数据技术毕业论文【数据】文章浏览阅读616次,点赞11次,收藏20次。先定方向,然后定题目,明确研究对象、研究内容、创新点在哪里。总的来说,最重要的就是定的题目要确保后续能够写的出来,写的顺畅。论文需要的数据提前准备好,案例提前查阅清楚,文献在定题目前至少看上几十篇。本人长期从事这方面的科研工作,去年光是帮忙修改和润色就有几十篇文章,这里分享一些今年最新的题目及写作指导。有具体问题,可以扫码底部二维码或者私信。这里也总结了适合今年的选题,几乎涵盖了所有选题方向。有简单的,有难的。有的题目可以直接用,有的还需要再细化下,稍微改动一下,也能作为创新的选题。后续会陆续更新。https://blog.csdn.net/lagougongzuoshi/article/details/144359924?spm=1001.2014.3001.5501

1. 数据收集与预处理

在构建基于机器学习的量化交易策略时,数据的质量和数量至关重要。本文首先从雅虎财经(Yahoo Finance)上爬取了自2013年6月1日至2021年6月10日间所有A股的日线行情数据,这些数据涵盖了开盘价、收盘价、最高价、最低价、成交量、换手率及复权因子等七个关键指标。为了确保所选股票具有代表性且符合沪深300指数成分股的标准,我们进一步筛选出曾进入过沪深300成分股名单的股票,最终得到约52万条有效记录。

  • 数据来源
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值