1. 数据获取与处理
- 数据采集:通过Python的爬虫技术,从农业网站上获取农产品价格数据、经济变量(如GDP、CPI)、农业生产变量(如种植面积、气候条件)等信息。
- 数据清洗:针对农产品价格中的周期性特征、重复值、离群值以及节假日波动,进行数据预处理。包括缺失值填补、异常值处理、归一化等步骤。
- 特征选择:使用格兰杰因果关系检验分析五种经济和农业生产变量,筛选出与农产品价格高度相关的影响因素。
-
import requests from bs4 import BeautifulSoup import pandas as pd # 爬虫示例,获取农产品价格数据 def get_price_data(url): response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') # 解析数据,提取价格信息 table = soup.find('table') data = [] for row in table.find_all('tr'): cols = row.find_all('td') data.append([col.text for col in cols]) df = pd.DataFrame(data, columns=['Date', 'Price']) return df url = 'https://agriculture-website.