深度学习优化农产品价格预测【Python+matlab代码】

1. 数据获取与处理
  • 数据采集:通过Python的爬虫技术,从农业网站上获取农产品价格数据、经济变量(如GDP、CPI)、农业生产变量(如种植面积、气候条件)等信息。
  • 数据清洗:针对农产品价格中的周期性特征、重复值、离群值以及节假日波动,进行数据预处理。包括缺失值填补、异常值处理、归一化等步骤。
  • 特征选择:使用格兰杰因果关系检验分析五种经济和农业生产变量,筛选出与农产品价格高度相关的影响因素。
  • import requests
    from bs4 import BeautifulSoup
    import pandas as pd
    
    # 爬虫示例,获取农产品价格数据
    def get_price_data(url):
        response = requests.get(url)
        soup = BeautifulSoup(response.text, 'html.parser')
        
        # 解析数据,提取价格信息
        table = soup.find('table')
        data = []
        for row in table.find_all('tr'):
            cols = row.find_all('td')
            data.append([col.text for col in cols])
            
        df = pd.DataFrame(data, columns=['Date', 'Price'])
        return df
    
    url = 'https://agriculture-website.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值