深度学习部署(Pytorch+windows)

目录

NVIDA GPU驱动

NVIDA GPU驱动

查看电脑显卡类型(电脑——属性——设备管理器——显示适配器)

进入NVIDA官方网站(官方驱动 | NVIDIA)下载对应驱动,

 接下来默认安装即可。

安装完成之后,查看自己的驱动版本(NVIDIA 控制面板——系统信息——组件)

CUDA ToolKit

安装CUDA之前,先看 

安装CUDA之前,先到pytorch官网(Start Locally | PyTorch)查看Pytorch都支持哪些版本的cuda:

选择自己想要安装的版本,下载对应的CUDA,下载地址为:CUDA Toolkit Archive | NVIDIA Developer

 当然,这个CUDA版本,不仅仅需要支持pytorch,也必须支持显卡驱动,可以在CUDA 12.1 Update 1 Release Notes (nvidia.com)查看

Cudnn

查看当前CUDA 版本对应的Cudnn,解压:

将这三个文件夹拷贝到cuda安装目录

同时,修改环境变量

  

Anaconda

下载网址(Free Download | Anaconda

下载后默认安装即可。

在Anaconda中创建虚拟环境:

conda create -n pytorch python=3.9

设置镜像源(阿里源),在C盘用户界面搜   .condarc. 更换内容为:

channels:
  - defaults
show_channel_urls: true
default_channels:
  - http://mirrors.aliyun.com/anaconda/pkgs/main
  - http://mirrors.aliyun.com/anaconda/pkgs/r
  - http://mirrors.aliyun.com/anaconda/pkgs/msys2
custom_channels:
  conda-forge: http://mirrors.aliyun.com/anaconda/cloud
  msys2: http://mirrors.aliyun.com/anaconda/cloud
  bioconda: http://mirrors.aliyun.com/anaconda/cloud
  menpo: http://mirrors.aliyun.com/anaconda/cloud
  pytorch: http://mirrors.aliyun.com/anaconda/cloud
  simpleitk: http://mirrors.aliyun.com/anaconda/cloud
 

Pytorch

 到pytorch官网(Start Locally | PyTorch),找到对应的安装版本,进入conda的虚拟环境,安装pytorch

conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia

 验证是否安装完成

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值