Joint fully convolutional and graph convolutional networks for weakly-supervised segmentation of

该文章提出了使用图像级别的前景区域标签作为弱标签,结合FCN和GCN进行组织区域分割的方法。通过预热FCN并利用动态超像素,实现了端到端的训练。在缺乏像素级别标注的情况下,此方法能与全监督模型达到类似的效果。
摘要由CSDN通过智能技术生成

Author: Jun Zhang

期刊:MIA

背景

在数字病理中,组织区域分割是必不可少的,先前的研究通常需要全监督(例如像素级别的标注),然而这种标注是比较难得的。

相关贡献

这篇文章的主要贡献如下:

1.用了图像级别前景区域的标签作为弱标签。

2.用动态超像素操作连接FCN和GCN,使得用端到端的方式训练我们的FGNet成为可能。

3.用弱监督学习策略预热提出的FCN模型。最后结果可以与强监督模型相匹敌。

方法

大致流程:

输入图像经过FCN得到像素级别的特征。根据特征生成超像素,以超像素为节点,得到节点特征以及边,由像素级特征和超像素的直方图特征初始化边的权重矩阵,再经过图神经网络,得到超像素标签。

       算法流程:

输入图像集合I,第s个图像Is的前景区域标注是Ps,不确定范围是rs,FCN由五个卷积层组成,每个卷积层后面是relu和batch normalization。前4个卷积层3*3,最后一个1*1。

通过FCN,Is被映射为fcn(Is,W1),它采用无监督学习策略预热FCN,对特征图设定了一个阈值,i j是输入图像的坐标,k是通道。FCN的损失函数是欧米伽1(W1)。

整体算法流程是:Is输入FCN得到Fs,由Fs经过SLIC超像素聚类算法得到Cs,其中A是随机的。然后由Fs和Cs的池化得到节点特征(公式3),把超像素作为节点进一步得到边,也就是邻接矩阵(公式4),通过Fs和Cs得到的直方图特征来初始化边的权重矩阵(公式5)。

它基于超像素中每一类别的出现频率。k是类别总数,xk是在第a个超像素中第k类出现的概率。然后进入到弱监督分类模型利用GCN,得到所有节点的标签概率,为了计算损失。他们提出使用一个不确定范围约束来识别Ls中的确定性节点。

 

 

 

graph convolutional networks (GCNs)是一种用于半监督分类的图卷积网络。GCNs适用于处理图数据,其中图由节点和节点之间的连接边组成。半监督分类是指在一些标记有类别的节点样本的基础上,对未标记的节点进行分类。以下是关于GCNs在半监督分类中的代码解释: GCNs的代码通常包含以下主要部分: 1. 数据准备:首先,我们需要准备图数据。这包括节点特征矩阵和图的邻接矩阵。节点特征矩阵是一个二维矩阵,每一行对应一个节点的特征向量。邻接矩阵描述节点之间的连接关系。 2. 定义模型:接下来,我们定义GCNs的模型结构。这包括定义卷积层、池化层和分类层等。卷积层用于在图上学习节点的特征表达,池化层用于减少节点的数量,分类层用于进行节点分类。 3. 前向传播:在GCNs中,前向传播的过程是通过迭代卷积层来逐步改进节点特征。我们可以通过相邻节点的特征加权平均来更新每个节点的特征。这个过程被称为图卷积。 4. 反向传播与优化:在前向传播后,我们计算模型预测结果与真实标签之间的损失。然后,使用反向传播算法计算梯度,并通过优化算法(例如随机梯度下降)更新模型的参数,以最小化损失。 5. 训练和评估:使用带有已标记节点标签的图数据集进行模型的训练。训练的目标是使模型能够准确预测未标记节点的类别。评估阶段,我们在测试集上评估模型的性能,通常使用准确率等指标来度量分类结果的质量。 总的来说,GCNs的代码实现主要涉及图数据的准备、模型定义、前向传播、反向传播与优化以及训练和评估等步骤。通过这些步骤,我们可以使用GCNs对图数据进行半监督分类任务。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值