一文搞懂“支付与收单”

本文介绍了收单业务的背景、定义,详细区分了线下POS收单(包括银行卡收单)和条码支付,强调了特约商户管理、银行结算账户以及支付过程中的安全验证。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、收单业务背景及定义

1.1背景

1.2定义

指收单机构与特约商户签订银行卡受理协议,在特约商户按约定受理银行卡并与持卡人达成交易底,为特约商户提供交易资金结算服务的行为。

二、收单业务分类

根据支付场景的不同,收单业务分为线下收单业务和线上收单业务。从这个定义中,我们可以发现收单业务涉及的主体分为四类,分别是:持卡人、特约商户、银行、收单机构。

2.1线下收单

2.1.1POS收单或银行卡收单

1.名词解释

POS收单,指收单机构向签约商户提供的本外币资金结算服务。通俗讲收单机构为特约商户安装POS机具,持卡人在特约商户进行购物消费时通过刷卡方式支付款项,收单机构负责将扣减一定手续费后消费资金记入商户账户。

银行卡收单,是持卡人在特约商户处刷卡消费,银行将持卡人刷卡缴费的资金在规定周期内结算给商户,并收取一定比例的手续费的行为。

常见的场景就是我们(持卡人)日常去商场(特约商户)购物,通过POS机(收单机构提供)刷卡或者挥卡完成支付,之后资金通过清算机构(如银联)清算至特约商户的账户。主要流程图如下图:

收单机构与特约商户

2.银行卡业务管理规定

A.特约商户管理

B.特约商户的收单银行结算账户

C.银行卡收单业务风险管理

3.银行卡POS收单业务交易及结算流程

4.结算收费

2.1.2条码收单

2015年可以说是条码支付的元年。区别与传统的线下银行卡支付和线上网络支付,条码支付算在一种新的支付模式,但是微信、支付宝和各银行对条码支付都是通过线下商行进件建档管理的,条码支付的费率也是参考线下费率的,因此一般把条码支付归在线下收单。条码的本质是一个URL地址,通过一定的算法生成对应的条码。常见的条码支付分为主扫和被扫两种模式。主扫最常见的场景就是我们去菜市场买菜,扫描商家二维码,输入金额,完成支付。被扫常见场景就是我们去商超买货物后,商家输入结账金额,我们消费者出示付款吗完成支付。

 参考:

安全验证 - 知乎

### YOLOv8 的主要特性和使用教程 #### 一、YOLOv8的主要特性 YOLOv8 是目标检测领域的一个重要进展,具有多个显著特点: - **轻量级跨尺度特征融合(CCFM)**:通过引入 CCFM 模块实现了更有效的多尺度特征提取和融合,提升了模型性能的同时保持了较低的计算成本[^3]。 - **改进的数据增强方式**:采用更加多样化且高效的数据增广手段来提高泛化能力,在不同场景下均能取得良好效果[^4]。 - **优化后的骨干网络设计**:相较于前代版本,YOLOv8 对其基础架构进行了调整优化,使得整体效率更高,速度更快[^1]。 - **支持多种任务类型**:除了常规的目标分类外,还能够处理实例分割等复杂视觉识别挑战。 #### 二、YOLOv8 使用教程 ##### 安装依赖库并准备环境 为了顺利地安装和运行 YOLOv8 ,建议先创建一个新的 Python 虚拟环境,并按照官方文档中的指导完成必要的软件包安装工作。通常情况下这会涉及到 PyTorch 及其他辅助工具链的选择配置。 ```bash conda create -n yolov8 python=3.9 conda activate yolov8 pip install ultralytics ``` ##### 准备数据集 准备好用于训练或测试目的图像资料集合非常重要;这些素材应该被妥善整理成标准格式以便于后续操作。对于自定义项目而言,则需参照特定框架的要求来进行相应预处理步骤。 ##### 编写配置文件 编写合适的 `.yaml` 文件以指定各项超参数设定以及输入源信息等内容。此过程可能涉及但不限于设置锚框尺寸、类别数目以及其他影响最终输出质量的关键因素。 ```yaml train: ./datasets/train/images/ val: ./datasets/valid/images/ nc: 80 names: ['person', 'bicycle', ... ] ``` ##### 启动训练进程 当一切准备工作就绪之后就可以调用命令行接口执行实际的学习任务了。这里需要注意的是具体选项可能会依据个人需求有所差异,请务必仔细阅读相关说明材料后再做决定。 ```python from ultralytics import YOLO model = YOLO('yolov8.yaml') results = model.train(data='coco128.yaml', epochs=100, imgsz=640) ``` ##### 进行预测评估 最后一步则是利用已经训练好的权重文件对未知样本实施推断作业,并据此作出合理的判断结论。同样可以通过简单的 API 接口轻松达成这一目标。 ```python predictions = model.predict(source="https://ultralytics.com/images/bus.jpg", conf=0.5) print(predictions) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值