2019ICPC上海网络赛C题 (广义三角形个数 FFT+容斥+暴力)

大致题意

给3个长度为n的数组,(1<=n<=100000, 1<=ai,bi,ci<=100000) 求每个数组选择一个数凑成广义三角形的个数。(两边之和可以等于第3边)
注:n大于1000的样例有20组

思路

跟HDU4609思路类似,不过这里有3个数组。分别枚举每个数组中的值作为最长边,另外两个数组做FFT,求个前缀和,累计sum[a[i]-1]的数量作为不满足三角形的,然后最终用nnn剪掉。这种容斥方法的正确性可以自己证明一下。
但是这样会T… 因为题目只有20组样例的n大于1000,所以之前的小数据可以直接暴力求出两个数组组合的个数,n^2的复杂度,但是FFT的复杂度是与最大数值相关的,所以即使n很小,但是ai很大,FFT复杂度还是很高。

代码
#include<bits/stdc++.h>
using namespace std;
#define maxn 1000005
#define maxm 1000006
#define ll long long int
#define INF 0x3f3f3f3f
#define inc(i,l,r) for(int i=l;i<=r;i++)
#define dec(i,r,l) for(int i=r;i>=l;i--)
#define mem(a) memset(a,0,sizeof(a))
#define sqr(x) (x*x)
#define inf (ll)2e18+1
#define PI acos(-1)
int read(){
    int x=0,f=1;char ch=getchar();
    while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
     while(isdigit(ch))x=x*10+ch-'0',ch=getchar();
     return f*x;
}
int T,n;
struct Complex
{
    double x, y;    //  实部和虚部 x + yi
    Complex(double _x = 0.0, double _y = 0.0){x = _x;y = _y;}
    Complex operator - (const Complex &b) const{return Complex(x - b.x, y - b.y);}
    Complex operator + (const Complex &b) const{return Complex(x + b.x, y + b.y);}
    Complex operator * (const Complex &b) const{return Complex(x * b.x - y * b.y, x * b.y + y * b.x);}
};
void change(Complex y[], int len)
{
    int i,j,k;
    for(i=1,j=len/2;i<len-1;i++){
        if(i<j)swap(y[i],y[j]);
        k=len/2;
        while (j>=k){j-=k;k/=2;}
        if (j<k)j+=k;
    }
    return ;
}
void fft(Complex y[], int len, int on)
{
    change(y,len);
    for(int h=2;h<=len;h<<=1){
        Complex wn(cos(-on*2*PI/h),sin(-on*2*PI/h));
        for(int j=0;j<len;j+=h){
            Complex w(1,0);
            for(int k=j;k<j+h/2;k++){
                Complex u=y[k];
                Complex t=w*y[k+h/2];
                y[k]=u+t;
                y[k+h/2]=u-t;
                w=w*wn;
            }
        }
    }
    if(on==-1)for(int i=0;i<len;i++)y[i].x/=len;
}
ll cnt1[maxn],cnt2[maxn],cnt3[maxn],sum[maxn],cnt[maxn];
int a[maxn],b[maxn],c[maxn],ma1,ma2,ma3;
Complex v1[maxn],v2[maxn];
int main()
{
    T=read();
    int kase=0;
    while(T--){
        n=read();
        if(n<=1000){
            ll ans=0;
            int ma=-1;
            inc(i,1,n)a[i]=read(),ma=max(ma,a[i]);
            inc(i,1,n)b[i]=read(),ma=max(ma,b[i]);
            inc(i,1,n)c[i]=read(),ma=max(ma,c[i]);
            inc(i,1,ma)sum[i]=0;
            inc(i,1,n)inc(j,1,n)sum[a[i]+b[j]]++;
            inc(i,1,ma)sum[i]+=sum[i-1];
            ll ans1=0;
            inc(i,1,n)ans1+=sum[c[i]-1];
            inc(i,1,ma)sum[i]=0;
            inc(i,1,n)inc(j,1,n)sum[a[i]+c[j]]++;
            inc(i,1,ma)sum[i]+=sum[i-1];
            ll ans2=0;
            inc(i,1,n)ans2+=sum[b[i]-1];
            inc(i,1,ma)sum[i]=0;
            inc(i,1,n)inc(j,1,n)sum[b[i]+c[j]]++;
            inc(i,1,ma)sum[i]+=sum[i-1];
            ll ans3=0;
            inc(i,1,n)ans3+=sum[a[i]-1];
            ans=1ll*n*n*n-ans1-ans2-ans3;
            printf("Case #%d: %lld\n",++kase,ans);
            continue;
        }
        int ma=-1,x;
        ma1=ma2=ma3=0;
        inc(i,1,n){
            //x=read();
            scanf("%d",&x);
            ma1=max(ma1,x);
            cnt1[x]++;
            a[i]=x;
        }
        inc(i,1,n){
            scanf("%d",&x);
            ma2=max(ma2,x);
            cnt2[x]++;
            b[i]=x;
        }
        inc(i,1,n){
            //c[i]=read();
            scanf("%d",&c[i]);
            ma3=max(ma3,c[i]);
            cnt3[c[i]]++;
        }
        ma=max(ma1,max(ma2,ma3));
        int len=1;//ma=max(ma1,ma2);
        while(len<2*ma)len<<=1;
        inc(i,0,ma)v1[i]=Complex(cnt1[i],0);
        inc(i,ma+1,len-1)v1[i]=Complex(0,0);
        inc(i,0,ma)v2[i]=Complex(cnt2[i],0);
        inc(i,ma+1,len-1)v2[i]=Complex(0,0);
        fft(v1,len,1);fft(v2,len,1);
        inc(i,0,len-1)v1[i]=v1[i]*v2[i];
        fft(v1,len,-1);
        inc(i,0,2*ma)cnt[i]=(ll)(v1[i].x+0.5);
        inc(i,1,2*ma)sum[i]=sum[i-1]+cnt[i];
        ll ans1=0;
        inc(i,1,n)ans1+=sum[c[i]-1];
        
        len=1;//ma=max(ma1,ma3);
        while(len<2*ma)len<<=1;
        inc(i,0,ma)v1[i]=Complex(cnt1[i],0);
        inc(i,ma+1,len-1)v1[i]=Complex(0,0);
        inc(i,0,ma)v2[i]=Complex(cnt3[i],0);
        inc(i,ma+1,len-1)v2[i]=Complex(0,0);
        fft(v1,len,1);fft(v2,len,1);
        inc(i,0,len-1)v1[i]=v1[i]*v2[i];
        fft(v1,len,-1);
        inc(i,0,2*ma)cnt[i]=(ll)(v1[i].x+0.5);
        inc(i,1,2*ma)sum[i]=sum[i-1]+cnt[i];
        ll ans2=0;
        inc(i,1,n)ans2+=sum[b[i]-1];
        
        len=1;//ma=max(ma3,ma2);
        while(len<2*ma)len<<=1;
        inc(i,0,ma)v1[i]=Complex(cnt2[i],0);
        inc(i,ma+1,len-1)v1[i]=Complex(0,0);
        inc(i,0,ma)v2[i]=Complex(cnt3[i],0);
        inc(i,ma+1,len-1)v2[i]=Complex(0,0);
        fft(v1,len,1);fft(v2,len,1);
        inc(i,0,len-1)v1[i]=v1[i]*v2[i];
        fft(v1,len,-1);
        inc(i,0,2*ma)cnt[i]=(ll)(v1[i].x+0.5);
        inc(i,1,2*ma)sum[i]=sum[i-1]+cnt[i];
        ll ans3=0;
        inc(i,1,n)ans3+=sum[a[i]-1];
        
        ll ans=n*1ll*n*n-ans1-ans2-ans3;
        printf("Case #%d: %lld\n",++kase,ans);
        inc(i,0,ma1)cnt1[i]=0;
        inc(i,0,ma2)cnt2[i]=0;
        inc(i,0,ma3)cnt3[i]=0;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值