数据结构::浅析平衡二叉树

本文介绍了平衡二叉树(AVL树)的重要性,其概念是具有左右子树高度差不超过1的搜索二叉树。重点讲述了AVL树的插入操作,包括插入后的平衡因子调节及四种旋转情况。通过平衡因子判断是否为平衡二叉树,并提供了测试用例以验证代码的正确性。
摘要由CSDN通过智能技术生成

【为什么我们要引入平衡二叉树?】

在学习完搜索二叉树后,我们知道搜索二叉树退化了之后,它的样子和单链表很像(如下图),在这种情况下,我们如果进行搜索的话,它的时间复杂度就大大降低了,此时的时间复杂度是O(N)。


因此我们引入了平衡二叉树,它解决了搜索二叉树效率低的缺点

【平衡二叉树(AVL树)】:

1、平衡二叉树的概念:

(首先它是搜索二叉树)要么是空树,要么是具有以下性质的二叉树:

1)左右子树都是平衡二叉树

2)左右子树的高度之差不超过1

3)每个节点都有一个平衡因子,平衡因子的取值范围只能是-1,0,1.

2、平衡因子:

     平衡二叉树中左右子树的高度或者说深度之差,我们可以知道,平衡因子的取值为:-1,0,1.

     说明:我们用平衡因子的大小来判断是不是平衡二叉树

3、节点的定义(结构):

说明:关于在结构中,多了一个关键值,这个关键值的作用我后面会讲到。

template<class K,class V>
struct AVLTreeNode
{
	K _key;   //关键字
	V _value;  //关键值
	int _bf;   //平衡因子
	AVLTreeNode<K,V>* _left;
	AVLTreeNode<K,V>* _right;
	AVLTreeNode<K,V>* _parent;

	AVLTreeNode(const K& key,V& value)
		:_left(NULL)
		,_right(NULL)
		,_parent(NULL)
		,_key(key)
		,_value(value)
		,_bf(0)
	{}
};

4、平衡二叉树的查找

说明:在查找的时候和搜索二叉树是一样的

Node* Find(const K& key)
	{
		if(_root == NULL)
			return NULL;
		Node* cur = _root;
		while(cur)
		{
			if(cur->_key > key)
			{
				cur = cur->_left;
			}
			else if(cur->_key < key)
			{
				cur = cur->_right;
			}
			else
			{
				return cur;
			}
		}
		return NULL;
	}

5、平衡二叉树的插入(重点)

     我们来看下插入的步骤:

1)首先我们先找到要插入的点

2)找到之后,插入要插入的值

3)此时插入之后,就要进行平衡因子的调节。

    ** 插入之后,父节点的平衡因子要分的情况:

  

   **旋转的时候又要进行细分,下面我用图解来进行说明:

 

   代码的实现:

    **插入的代码

	bool Insert(const K& key,V& value)
	{
		if(_root == NULL)
		{
			_root = new Node(key,value);
			return true;
		}
		Node* cur = _root;
		Node* parent = NULL;
		//1、先找要插入的点
		while(cur)
		{
			if(cur->_key > key)
			{
				parent = cu
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值