MySQL 老玩家对 “高并发” 的痛点太熟悉了:连接数满、锁等待超时、QPS 上不去,只能靠堆服务器硬扛。但 PostgreSQL(PG)在高并发场景下天生有优势:轻量级连接模型、更精细的锁机制、灵活的参数调优,再配合专业工具,不用堆硬件也能支撑 10 万 QPS,堪称 “MySQL 高并发优化的平替王者”。
这篇是 PostgreSQL 专栏的高并发优化实战篇,核心目标是帮 MySQL 老玩家 “无缝迁移” PG 高并发方案:从连接池、锁机制、参数调优、SQL 优化四个维度,拆解 PG 高并发的核心技巧,每步都附代码、对比表格和性能测试,保证你看完能直接解决 “秒杀卡顿、连接数满、锁等待” 等痛点。
一、先扎心:MySQL 高并发的 “3 大痛点”,PG 全解决了
MySQL 老玩家在高并发场景下,总有绕不开的坑:连接数调大就内存溢出、锁等待导致数据不一致、QPS 卡在 5 万上不去。而 PG 的高并发设计,刚好精准戳中这些痛点。用 “餐厅运营” 类比,一眼看清差距:
plaintext
【MySQL高并发(痛点)】
- 连接数:每个连接是“独立服务员”(重量级进程),雇2000个服务员(连接),餐厅(服务器)直接挤爆;
- 锁机制:“点菜区”(数据行)锁了就全堵,别人只能排队,死锁概率高;
- QPS上限:单实例QPS很难突破5万,再高就靠分库分表堆机器。
【PG高并发(优势)】
- 连接数:每个连接是“共享服务员”(轻量级线程),2000个连接对应100个服务员,效率翻倍;
- 锁机制:“点菜区”分细粒度锁,别人点别的菜不耽误,锁等待时间骤降;
- QPS上限:单实例优化后轻松突破10万QPS,不用堆机器也能扛秒杀。
核心差异表(MySQL 8.0 vs PG 16)
| 优化维度 | MySQL(8.0) | PostgreSQL(16) | 优势总结 | 实战价值 |
|---|---|---|---|---|
| 连接模型 | 重量级进程(每个连接占 2-4MB 内存) | 轻量级线程 + 共享内存(每个连接占几十 KB) | PG(内存占用仅 MySQL 的 1/10) | 相同内存下,PG 支持连接数是 MySQL 的 5-10 倍 |
| 连接池支持 | 依赖第三方(如 Druid),适配性一般 | 原生支持 + 专业工具(pgbouncer),无缝集成 | PG(配置简单,性能损耗低) | 秒杀场景下连接数从 2000 降到 100,QPS 翻倍 |
| 锁机制 | 行锁 + 表锁 + 间隙锁,死锁概率高 | 行锁 + 页锁 + 表锁,支持乐观锁,锁粒度更细 | PG(锁等待时间降低 80%) | 秒杀下单时锁等待从 500ms 降到 10ms |
| 高并发参数 | 可调参数少(如 max_connections) | 丰富参数(shared_buffers、work_mem 等),精准调优 | PG(能针对性解决不同瓶颈) | 单实例 QPS 从 3 万冲到 10 万 |
| 事务优化 | 长事务阻塞所有操作 | 长事务仅阻塞相关行,不影响全局 | PG(长事务影响范围极小) | 统计报表长事务不耽误秒杀下单 |
老玩家吐槽式总结:MySQL 高并发优化像 “给自行车装火箭发动机”,费劲还效果有限;PG 高并发优化像 “给跑车调参数”,天生底子好,稍微优化就起飞,尤其适合秒杀、支付、直播带货等高频读写场景。
二、核心原理:PG 高并发的 “3 个秘密武器”(MySQL 老玩家秒懂)
PG 能扛高并发,不是靠 “堆硬件”,而是底层设计有 3 个 “秘密武器”,用类比快速理解:
1. 轻量级连接模型(秘密武器 1)
MySQL 的连接是 “重量级进程”:每个连接对应一个

最低0.47元/天 解锁文章
717

被折叠的 条评论
为什么被折叠?



