机器学习
文章平均质量分 90
Nine_xu
你说你遇上了一大堆奇怪的人
展开
-
《Attention Is All You Need》阅读笔记
基本信息论文:《Attention Is All You Need》作者:Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, Lizhe Wanga,Illia Polosukhin年份: 2017参考:沐神的讲解: https://www.bilibili.com/video/BV1pu411o7BE?spm_id_from=333.999.原创 2022-02-28 17:30:47 · 1430 阅读 · 0 评论 -
【DSRMR】Robust unsupervised fs via dual self-representation and manifold regularization
基本信息论文:《Robust unsupervised feature selection via dual self-representation andmanifold regularization》作者: Chang Tanga, Xinwang Liub, Miaomiao Li b, Pichao Wangc,∗, Jiajia Chend,∗, Lizhe Wanga,Wanqing Li年份: 2018主要思想以前存在的问题:之前的基于图的正则化自表示的无监督特征选择方法中至少原创 2020-05-10 15:54:04 · 296 阅读 · 0 评论 -
【LRPP-GRR】Low-Rank Preserving Projection Via Graph Regularized Reconstruction
文章目录思想模型参考论文:Low-Rank Preserving Projection Via Graph Regularized Reconstruction作者:Jie Wen, Na Han, Xiaozhao Fang , Lunke Fei, Ke Yan, and Shanhua Zhan思想 近些年,基于低秩的特征提取方法,由于他对噪声的鲁棒性和揭示数据固有全局结构方面的良...原创 2019-11-27 19:40:30 · 695 阅读 · 2 评论 -
【机器学习】Graph-dual Laplacian principal component analysis(gDLPCA)
gDLPCA文章目录思想PCAgLPCAgDLPCA优化求解gDLPCA算法参考论文:Graph-dual Laplacian principal component analysis作者:Jinrong He · Yingzhou Bi · Bin Liu · Zhigao Zeng思想 近年来,研究表明,高维数据不仅存在于数据空间的低维流形上,特征也存在于特征空间的流形上。然而PC...原创 2019-11-05 17:33:05 · 471 阅读 · 0 评论 -
【机器学习】Unsupervised feature selection by regularized self-representation(RSR)
RSR参考论文:Unsupervised feature selection by regularized self-representation作者:Pengfei Zhu , Wangmeng Zuo , Lei Zhang , Qinghua Hu , Simon C.K. Shiu模型该模型中,特征矩阵由它本身表示,来找到具有代表性的特征分量。用L2,1L_{2,1}L2,1范数...原创 2019-10-14 11:16:13 · 653 阅读 · 0 评论 -
【机器学习】Inductive Robust Principal Component Analysis(IRPCA)
IRPCA参考论文:Inductive Robust Principal Component Analysis作者:Bing-Kun Bao, Guangcan Liu, Member, IEEE, Changsheng Xu, Senior Member, IEEE, and Shuicheng Yan, Senior Member, IEEEPCAPCA由于F范数,对噪声和...原创 2019-10-07 21:53:51 · 484 阅读 · 1 评论 -
【机器学习】奇异值阈值(SVT)求解
SVT的求解目标函数:minE1β∣∣E∣∣∗+12∣∣E−B∣∣F2min_E\frac{1}{\beta}||E||_*+\frac{1}{2}||E-B||_F^2minEβ1∣∣E∣∣∗+21∣∣E−B∣∣F2用SVT对其进行求解:第一步:求BBB的奇异值分解(SVD),这里B∈Rd∗T,rank(B)=rB∈R^{d*T},rank(B)=rB∈Rd∗T,rank(B...原创 2019-10-07 21:49:32 · 2499 阅读 · 0 评论 -
【机器学习】LatLRR
LatLRR文章目录LatLRRLRRLatLRR参考论文:Latent Low-Rank Representation for Subspace Segmentation and Feature Extraction作者:Guangcan Liu, Shuicheng YanElectrical and Computer Engineering, National University ...原创 2019-09-25 21:50:51 · 3025 阅读 · 2 评论 -
【机器学习】LPP\NPE\SR\SPP\CRP\RPCA\LRR\LRPP\LRPE\ LR-2DNPP\OMF-2DPCA等
LPP类似于PCA,LPP也是一个非监督降维方法。PCA保留了数据的全局结构,而LPP保持数据的局部结构。LPP的目标函数如下:12∑ijnHij∣∣yi−yj∣∣22\frac{1}{2}\sum_{ij}^nH_{ij}||y_i-y_j||_2^221ij∑nHij∣∣yi−yj∣∣22其中yi=pTxiy_i=p^Tx_iyi=pTxi和yj=pTxj,i=1,2,.....原创 2019-09-19 13:07:22 · 3095 阅读 · 0 评论 -
【机器学习】【降维】稀疏保持投影(SPP)
稀疏保持投影文章目录稀疏保持投影一、主要思想二、算法步骤参考论文:sparsity preserving projections with applications to face recognition作者:Lishan Qiao,Songcan Chen,Xiaoyang Tan 2010一、主要思想 线性降维方法:PCAf关注于全局,但对于非线性的数据结构,PCA的结果并不...原创 2019-09-05 14:09:43 · 3104 阅读 · 3 评论 -
【机器学习】【降维】局部线性嵌入(LLE)原理总结
局部线性嵌入(Locally Linear Embedding,以下简称LLE)也是非常重要的降维方法。和传统的PCA,LDA等关注样本方差的降维方法相比,LLE关注于降维时保持样本局部的线性特征,由于LLE在降维时保持了样本的局部特征,它广泛的用于图像图像识别,高维数据可视化等领域。下面我们就对LLE的原理做一个总结。1、流形学习概述 LLE属于流形学习(Manifold Learning...转载 2019-08-31 17:35:43 · 2609 阅读 · 1 评论 -
PCA主成分分析
PCA主成分分析给定一组数据 {x1,x2,...,xnx_1,x_2,...,x_nx1,x2,...,xn}预处理 将每一维特征的均值中心化,方差归一化u=1n∑i=1nxiu = \frac {1}{n}\sum_{i=1}^nx_iu=n1∑i=1nxi // uuu就是数据中心{x1,x2,...,xnx_1,x_2,...,x_nx1,...原创 2019-08-28 12:54:08 · 478 阅读 · 0 评论 -
【机器学习】【降维】局部保持投影(LPP Locality Preserving Projections)
局部保持投影(LPP)论文:《Locality Preserving Projections》作者:何小飞(2003)一、摘要: LPP应该被视为PCA的替代方法。PCA是一种经典的线性技术,他沿着最大方差的方向投影数据。当高维数据位于嵌入外围空间的低维流形上是,通过求流行上 Laplace Beltrami算子特征函数的最优特征逼近,得到局部保持投影。因此,LPP具有许多非线性技术的数...原创 2019-08-28 16:35:20 · 8995 阅读 · 3 评论