【机器学习】Unsupervised feature selection by regularized self-representation(RSR)

RSR
参考论文:Unsupervised feature selection by regularized self-representation
作者:Pengfei Zhu , Wangmeng Zuo , Lei Zhang , Qinghua Hu , Simon C.K. Shiu

模型

该模型中,特征矩阵由它本身表示,来找到具有代表性的特征分量。用 L 2 , 1 L_{2,1} L2,1范数来表示残差,从而减少异常值的影响。与其他模型不同的是,本模型目标是识别一个有代表性的特征子集,使得所有的特征都能被很好的重构,因此对表示系数施加 L 2 , 1 L_{2,1} L2,1范数来保证行稀疏。
在本文模型中,如果一个特征是重要的,它将参与到其他特征的表示中,从而产生一排重要的表示稀疏,反之亦然。

样本矩阵为 X ∈ R n ∗ m X∈R^{n*m} XRnm,其中 n n n表示样本数, m m m表示特征数。使用 x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn来表示 n n n个样本, x i ∈ R m x_i∈R^m xiRm,于是 X = [ x 1 ; x 2 ; . . . ; x n ] X=[x_1;x_2;...;x_n] X=[x1;x2;...;xn],使用 f 1 , f 2 , . . . , f m f_1,f_2,...,f_m f1,f2,...,fm表示 m m m个特征, f i ∈ R n f_i∈R^n fiRn,于是 X = [ f 1 , f 2 , . . . , f m ] X=[f_1,f_2,...,f_m] X=[f1,f2,...,fm]

对于样本 X X X的每一个特征 f i f_i fi,我们把它表示为包括它本身的所有特征的线性组合: f i = ∑ j = 1 n f j w j i + e i f_i = \sum_{j=1}^nf_jw_{ji}+e_i fi=j=1nfjwji+ei对于所有特征,我们有: X = X W + E X = XW+E X=XW+E其中 W = w j i ∈ R m ∗ m W=w_{ji}∈R^{m*m} W=wjiRmm为表示系数。

学习到的矩阵 W W W应该在保证残差 E E E足够小的同时能反应不同特征的重要性,人们可能用2范来测量残差
∣ ∣ X − X W ∣ ∣ F 2 ||X-XW||_F^2 XXWF2),然而,F范数对异常值敏感。考虑到一个异常样本是样本矩阵 X X X的一行,也就是 E = X − X W E = X-XW E=XXW
的一行,所以用 L 2 , 1 L_{2,1} L2,1范数来表示残差 E E E,也就是,让残差 E E E行稀疏,从而提高对异常样本的鲁棒性。与此同时,让
W ∈ R m ∗ m W∈R^{m*m} WRmm,会由于让 E = 0 E=0 E=0从而得到一个过拟合的解,所以要加一个正则项 E ( W ) E(W) E(W)来避免过拟合。于是有以下模型 W ∗ = a r g m i n W ∣ ∣ X − X W ∣ ∣ 2 , 1 + λ R ( W ) W^* = argmin_W||X-XW||_{2,1}+\lambda R(W) W=argminWXXW2,1+λR(W)其中, W = [ w 1 ; . . . ; w i ; . . . ; w m ] W=[w_1;...;w_i;...;w_m] W=[w1;...;wi;...;wm], w i w_i wi W W W的一行, ∣ ∣ w i ∣ ∣ 2 ||w_i||_2 wi2可以用来作为特征权重,因为它反应了第 i i i个特征在表示中的重要性。如果 ∣ ∣ w i ∣ ∣ 2 = 0 ||w_i||_2=0 wi2=0则说明这个特征在表示其他特征时没有用。反之,如果这个特征参加了表示所有特征,则 ∣ ∣ w i ∣ ∣ 2 ||w_i||_2 wi2一定是有意义的。因此给矩阵 W W W施加行稀疏正则项,即 R ( W ) = ∣ ∣ W ∣ ∣ 2 , 1 = ∑ i = 1 m ∣ ∣ w i ∣ ∣ 2 R(W)=||W||_{2,1}=\sum_{i=1}^m||w_i||_2 R(W)=W2,1=i=1mwi2,所以目标函数为: W ∗ = a r g m i n W ∣ ∣ X − X W ∣ ∣ 2 , 1 + λ ∣ ∣ W ∣ ∣ 2 , 1 W^* = argmin_W||X-XW||_{2,1}+\lambda||W||_{2,1} W=argminWXXW2,1+λW2,1

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值