近世代数——Part1 整数和等价关系

前言

想系统地学习一下近世代数,参考书是Joseph-Gallian的《Contemporary Abstract Algebra》,希望花半年时间读完,在博客里做笔记督促自己。

很多抽象代数的关注点在整数和集合的特性,为未来的学习方便,这节介绍一些基础的结论。

良序性

良序性(视为公理):
任何正整数的非空集合都包含一个最小的数。

整除相关定义:

对于 s , t ∈ Z s,t\in Z s,tZ

  • t t t ( t ≠ 0 t\neq 0 t=0) is a divisor of s s s if ∃ u ∈ Z , s = t u \exists u\in Z,s=tu uZ,s=tu, we write t ∣ s t\mid s ts; we read “ t t t divides s s s”,即 t t t整除 s s s,或 t t t s s s的约数。反之,记为 t ∤ s t\nmid s ts
  • 质数:定义为只有1和它本身两个约数的数。
  • s s s is a multiple of t t t if ∃ u ∈ Z , s = t u \exists u\in Z, s=tu uZ,s=tu; 倍数,等价于 t ∣ s t\mid s ts
  • gcd ⁡ ( a , b ) \gcd(a,b) gcd(a,b) a a a b b b的最大公约数
  • 互质(relatively prime): gcd ⁡ ( a , b ) = 1 \gcd(a,b)=1 gcd(a,b)=1
  • l c m ( a , b ) \mathrm{lcm}(a,b) lcm(a,b) a a a b b b的最小公倍数

Theorem 0.1 Division Algorithm

∀ a , b ∈ Z , b > 0 → ∃ !   q , r ∈ Z , a = b q + r   ∧   0 ≤ r < b \forall a,b\in Z, b>0\to \exists !\ q,r\in Z,a=bq+r\ \land\ 0\le r<b a,bZ,b>0! q,rZ,a=bq+r  0r<b

约定符号 ∃ ! \exists ! !表示存在唯一的元素。

定理含义:这个定理描述了整数相除的结果, a a a是被除数, b b b是除数, q q q是商, r r r是余数。这里还限制了除数大于0,余数非负且余数必须小于除数,这样才能保证商和余数的唯一性。

证明:考虑一个集合 S = { a − b k ∣ k ∈ Z , a − b k ≥ 0 } S=\{a-bk\mid k\in Z,a-bk\ge 0\} S={abkkZ,abk0}

显然,集合是非空的,这很好证明,著需要选取适当的 k k k使得 a − b k ≥ 0 a-bk\ge 0 abk0即可,这里可以简单取 k = − b ∣ a ∣ k=-b|a| k=ba

如果 0 ∈ S 0\in S 0S,那么 b ∣ a b\mid a ba,此时必有 r = 0 , q = a / b r=0,q=a/b r=0,q=a/b,这取法是唯一的;

如果 0 ∉ S 0\notin S 0/S,根据良序性,集合必然存在一个最小的正数,不妨设为 r r r,此时有 a = b q + r , r ≥ 0 a=bq+r,r\ge 0 a=bq+r,r0,此时只需要证明 r < b r< b r<b即可。如果 r ≥ b r\ge b rb,很容易确定, r r r并非 S S S中最小的数,只需将 k k k增加1 ( a > 0 a>0 a>0的情况, a < 0 a<0 a<0则相反),那么必有 r − b ∈ S r-b\in S rbS

QED

Theorem 0.2 GCD is a Linear Combination

∀ a , b ∈ Z , a ≠ 0 , b ≠ 0 → ∃ s , t ∈ Z   , gcd ⁡ ( a , b ) = a s + b t \forall a,b\in Z, a\neq 0, b\neq 0\to \exists s,t\in Z\ ,\gcd(a,b)=as+bt a,bZ,a=0,b=0s,tZ ,gcd(a,b)=as+bt

gcd ⁡ ( a , b ) = min ⁡ { a s + b t ∣ a s + b t > 0 } \gcd(a,b)=\min\{as+bt\mid as+bt>0\} gcd(a,b)=min{as+btas+bt>0}

定理含义:这个定理说明,两个整数的最大公约数可以写成这两个数的线性组合,且最大公约数是这两个数的所有线性组合中,最小的正整数。

证明:考虑集合 S = { a m + b n ∣ m , n ∈ Z   ∧ a m + b n > 0 } S=\{am+bn\mid m,n\in Z\ \land am+bn>0\} S={am+bnm,nZ am+bn>0}

显然集合非空,选取 m m m n n n分别与 a a a b b b同号即可。

根据良序性,这个集合必然存在最小的元素,不妨设为 d = a s + b t d=as+bt d=as+bt,这里 s , t s,t s,t是集合取最小时确定的数。

根据定理内容, d = gcd ⁡ ( a , b ) d=\gcd(a,b) d=gcd(a,b),我们证明这个即可。

根据Theorem 0.1,直接考虑 a a a除以 d d d,必有 a = d q + r , 0 ≤ r < d a=dq+r,0\le r<d a=dq+r,0r<d,如果 r ≠ 0 r\neq 0 r=0 r = a − d q = a − ( a s + b t ) q = a − a s q − b t q = a ( 1 − s q ) + b ( − t q ) ∈ S r=a-dq=a-(as+bt)q=a-asq-btq=a(1-sq)+b(-tq)\in S r=adq=a(as+bt)q=aasqbtq=a(1sq)+b(tq)S,这说明 d d d并非 S S S中最小的数(因为此时 r r r a a a b b b的线性组合),产生矛盾,因此必有 r = 0 → d ∣ a r=0\to d\mid a r=0da,同理, d ∣ b d\mid b db,因此 d d d a , b a,b a,b的公约数。

假设存在比 d d d更大的公约数 d ′ d' d,必有 ∃ h , k ∈ Z , s . t .   a = d ′ h , b = d ′ k \exists h,k\in Z, \mathrm{s.t.}\ a=d'h,b=d'k h,kZ,s.t. a=dh,b=dk,因此 d = a s + b t = a d ′ h + b d ′ k = d ′ ( a h + b k ) d=as+bt=ad'h+bd'k=d'(ah+bk) d=as+bt=adh+bdk=d(ah+bk),显然 d ′ ∣ d d'\mid d dd d d d肯定是更大的数。推出矛盾,因此 d = gcd ⁡ ( a , b ) d=\gcd(a,b) d=gcd(a,b)

Corollary

a a a b b b互质等价于 ∃ s , t ∈ Z   s . t .   a s + b t = 1 \exists s,t\in Z\ \mathrm{s.t. }\ as+bt=1 s,tZ s.t. as+bt=1

Euclid’s Lemma

p ∣ a b → p ∣ a   ∨ p ∣ b p\mid ab \to p\mid a\ \lor p\mid b pabpa pb if p p p is a prime.

定理含义:质数如果是两个数乘积的约数,那么这个质数是这两个整数之一的约数。

证明:显然,分情况讨论下即可。

p ∣ a b   ∧   p ∤ a → 1 = a s + p t → b = a s b + p t b p\mid ab\ \land\ p\nmid a\to 1=as+pt\to b=asb+ptb pab  pa1=as+ptb=asb+ptb p p p是方程右侧的约数,自然是 b b b的约数

Theorem 0.3 Fundamental Theorem of Arithmetic

大于1的整数,要么是质数,要么是质数之积,且质因数分解方式唯一。

定理含义:算术基本定理,主要阐明,整数的质因数分解唯一。

证明:存在性的证明使用了强数学归纳法: 点击跳转 ;Euclid’s Lemma保证了分解的唯一性。

模算术

模是一种计数方法的抽象。例如,今天是星期3,23天后是星期几呢?只需要让23对7取余数,得2,所以答案是星期5.

模算术思想很简单,但在数学和计算机科学中很重要。

根据 Theorem 0.1 有 a = q n + r a=qn+r a=qn+r,我们记 a m o d    n = r a\mod{n}=r amodn=r

有一些显而易见的结论值得列出

  • a m o d    n = b   i i f .   n ∣ ( a − b ) a\mod n=b\ \mathrm{iif.}\ n\mid (a-b) amodn=b iif. n(ab)
  • 两个数和的模,积的模,都可以简化为先计算模,再加(乘),再取模。例如 27 × 36 m o d    11 = 5 × 3 m o d    11 27\times 36\mod{11}=5\times 3\mod{11} 27×36mod11=5×3mod11

一个有趣的例子

尝试证明: x 2 − y 2 = 1002 x^2-y^2=1002 x2y2=1002没有整数解。

证明:首先我们知道 1002 m o d    4 = 2 1002\mod{4}=2 1002mod4=2

对于任何整数,模4的结果只有0,1,2,3,而对于任何整数平方模4的结果,则只可能0,1,那很显然, x 2 − y 2 m o d    4 x^2-y^2\mod{4} x2y2mod4的结果无论如何都不可能是2。

复数

复数是具有形式 a + b i , a , b ∈ R , i = − 1 a+bi, a,b\in R,i=\sqrt{-1} a+bi,a,bR,i=1 的数。

极坐标表示 r ( cos ⁡ ( θ ) + i sin ⁡ ( θ ) ) r(\cos(\theta)+i\sin(\theta)) r(cos(θ)+isin(θ))

Theorem 0.4 Properties of Complex Numbers

  • 对加法封闭, ∀ a , b ∈ C → a + b ∈ C \forall a,b\in C\to a+b\in C a,bCa+bC
  • 对乘法封闭
  • 当除数不等于0时,对除法封闭
  • 非0复数的逆存在
  • ( r ( cos ⁡ θ + i sin ⁡ θ ) ) n = r n ( cos ⁡ n θ + i sin ⁡ n θ ) (r(\cos\theta+i\sin\theta))^n=r^n(\cos n\theta+i\sin n\theta) (r(cosθ+isinθ))n=rn(cosnθ+isinnθ)

数学归纳法

Theorem 0.5 First Principle of Mathematical Induction

S S S is a set and a ∈ S a\in S aS,Suppose S S S has the property whenever some integer n ≥ a n\ge a na belongs to S S S, then n + 1 n+1 n+1 also belong to S S S. Then, S S S contains every integer greater than or equal to a a a.

定理含义:说的是,如果集合 S S S有一个性质,即有一些大于等于 a a a的整数 n n n属于 S S S的话, n + 1 n+1 n+1必然也属于 S S S. 那么, S S S必然包含所有大于等于 a a a的整数。

Theorem 0.6 Second Principle of Mathematical Induction

S S S is a set and a ∈ S a\in S aS,Suppose S S S has the property that n ∈ S n\in S nS, when ∀ m ∈ S   s . t .   a ≤ m < n ,   m ∈ S \forall m\in S\ \mathrm{s.t.} \ a\le m<n,\mathrm{}\ m\in S mS s.t. am<n, mS .Then, S S S contains every integer greater than or equal to a a a.

定理含义:这里归纳仍然是需要两个条件,1. a ∈ S a\in S aS;2.如果假定 a ≤ m < n a\le m<n am<n的所有 m m m都属于 S S S,可推出 n ∈ S n\in S nS

两种归纳法的理解

首先说明一下,上述两个定理的表述我是抄的书上的,更合适的说法应该不是自然数属于集合 S S S,而是自然数具有某种特定的性质。

第一种归纳法是我们常见的那种,即存在一个起始点 a a a具有性质 p p p,**我们假定 n n n也具有性质 p p p,可推出 n + 1 n+1 n+1也具有性质 p p p**时,就可以得出结论:任何大于等于 a a a的整数都具有性质 p p p

第二种归纳法也叫强归纳法,区别在第二个条件,可以使用 a a a n − 1 n-1 n1的所有整数来推出 n n n,它假设的条件是更多的。

第二数学归纳法再某些情况下更好用,这里给出之前算术基本定理的证明:

约定,所有质数和质数之积的集合是 S S S

显然, 2 ∈ S 2\in S 2S,假定所有整数 ∀ k ∈ Z , s . t .   2 ≤ k < n → k ∈ S \forall k\in Z, \mathrm{s.t.}\ 2\le k<n\to k\in S kZ,s.t. 2k<nkS,对于 n n n来说,要么是质数属于 S S S,要么是合数可写成 a b , s . t .   1 < a < n   ∧   1 < b < n ab,\mathrm{s.t.}\ 1<a<n\ \land\ 1<b<n ab,s.t. 1<a<n  1<b<n,显然 a ∈ S   ∧   b ∈ S a\in S\ \land\ b\in S aS  bS,因此 n ∈ S n\in S nS

显然,通过这个证明,可以更深刻理解这两种归纳方式的别,强归纳法能在假设中把两个(甚至多个)变量 a a a b b b赋予性质 p p p,而第一种归纳方式仅假定了一个数。

另一个有趣的例子

给定任意面值5美元的硬币和面值8美元的硬币,找到这两种硬币最大的不可表示的总面值。

分析:很明显,题目就是求 5 5 5 8 8 8的非负整数系数的所有线性组合所不能表达的最大数,用符号表示即是: max ⁡ { Z − { 5 a + 8 b ∣ a , b ∈ Z   s . t .   a ≥ 0 , b ≥ 0 } } \max{\{Z-\{5a+8b\mid a,b\in Z\ \mathrm{s.t.}\ a\ge 0 ,b\ge 0\}\}} max{Z{5a+8ba,bZ s.t. a0,b0}}

很容易可以从小到大列出可表达的面值:

5 = 5 × 1 + 8 × 0 5=5\times 1+8\times 0 5=5×1+8×0

8 = 5 × 0 + 8 × 1 8=5\times 0+8\times 1 8=5×0+8×1

10 = 5 × 2 + 8 × 0 10=5\times 2+8\times 0 10=5×2+8×0

13 = 5 × 1 + 8 × 1 13=5\times 1+8\times 1 13=5×1+8×1

⋯ \cdots

26 = 5 × 2 + 8 × 2 26=5\times 2+8\times 2 26=5×2+8×2

28 = 5 × 4 + 8 × 1 28=5\times 4+8\times 1 28=5×4+8×1

29 = 5 × 1 + 8 × 3 29=5\times 1+8\times 3 29=5×1+8×3

⋯ \cdots

39 = 5 × 3 + 8 × 3 39=5\times 3+8\times 3 39=5×3+8×3

40 = 5 × 8 + 8 × 0 40=5\times 8+8\times 0 40=5×8+8×0

似乎从 27 27 27后面所有数都有正确的表示,我们可以考虑能否证明所有大于 27 27 27的数都可以表示为 5 a + 8 b 5a+8b 5a+8b的形式。

约定下面的 a , b a,b a,b服从约束: a , b ∈ Z   s . t .   a ≥ 0 , b ≥ 0 a,b\in Z\ \mathrm{s.t.}\ a\ge 0,b\ge 0 a,bZ s.t. a0,b0

首先用第一数学归纳法:

显然 28 28 28可以表示为 5 a + 8 b 5a+8b 5a+8b的形式,那么假设大于 28 28 28的一个数 n = 5 a + 8 b n=5a+8b n=5a+8b,显然, a ≥ 3   ∨   b ≥ 3 a\ge 3\ \lor\ b\ge 3 a3  b3,因为如果不满足此条件,将有 n ≤ 28 n\le 28 n28

接下来我们有: n + 1 = 5 a + 8 b + ( − 3 ⋅ 5 + 2 ⋅ 8 ) = 5 ⋅ ( a − 3 ) + 8 ⋅ ( b + 2 ) n+1=5a+8b+(-3\cdot5+2\cdot 8)=5\cdot (a-3)+8\cdot (b+2) n+1=5a+8b+(35+28)=5(a3)+8(b+2)

n + 1 = 5 a + 8 b + ( 5 ⋅ 5 − 3 ⋅ 8 ) = 5 ⋅ ( a + 5 ) + 8 ⋅ ( b − 3 ) n+1=5a+8b+(5\cdot5-3\cdot 8)=5\cdot (a+5)+8\cdot (b-3) n+1=5a+8b+(5538)=5(a+5)+8(b3)

显然,递推可以继续,QED

然后使用第二数学归纳法:

首先, 28 28 28满足条件,我们很容易验证 28 , 29 , 30 , 31 , 32 28,29,30,31,32 28,29,30,31,32满足条件,那么对于 n > 32 n>32 n>32,我们假定所有 28 ≤ k < n 28\le k< n 28k<n满足条件,现在要证明 n n n满足条件,很简单,由于 n − 5 n-5 n5满足, n n n自然满足(只需要把 a a a系数增加 1 1 1就是 n n n的表示)。QED

等价关系

事物的关系是复杂的,也取决于我们看待问题的角度,两件事物在一种角度下是完全不同的,但可能在另一种情况下是等价的。一个典型的例子是3和8当然是不同的,但在模5运算下确实相同的。数学中等价关系用于精确地区分各种等价和差异。

定义

An equivalence relation on a set S S S is a set R R R of ordered pairs of elements of S S S such that

  1. ( a , a ) ∈ R   ∀   a ∈ S (a,a)\in R\ \forall\ a\in S (a,a)R  aS
  2. ( a , b ) ∈ R → ( b , a ) ∈ R (a,b)\in R\to (b,a)\in R (a,b)R(b,a)R
  3. ( a , b ) ∈ R   ∧   ( b , c ) ∈ R → ( a , c ) ∈ R (a,b)\in R\ \land\ (b,c)\in R\to(a,c)\in R (a,b)R  (b,c)R(a,c)R

定义理解:等价关系需要对一个集合声明和定义(on a set S S S),它本身是一个有序二元对集合 R R R,二元对中的每个元素都是 S S S的元素。且等价关系满足反身性,对称性和传递性。

记号

如果 S S S是定义等价关系的集合, R R R表示等价关系, a , b ∈ S a,b\in S a,bS

  • ( a , b ) ∈ R (a,b)\in R (a,b)R可记为 a R b aRb aRb,也可记为 a ∼ b a\sim b ab
  • [ a ] = { x ∈ S ∣ x ∼ a } [a]=\{x\in S\mid x\sim a\} [a]={xSxa} a a a的等价类或含有 a a a的等价类

例子

这里仅列出几个重要的例子:

  1. n n n同余:

    n n n是正整数, a , b ∈ Z a,b\in Z a,bZ a ∼ b   i f   a m o d    n = b m o d    n a\sim b\ \mathrm{if}\ a\mod{n}=b\mod{n} ab if amodn=bmodn,模 n n n同余定义了一种等价关系,等价类可以表示为 [ a ] = { a + k n ∣ k ∈ Z } [a]=\{a+kn\mid k\in Z\} [a]={a+knkZ}。这个等价关系很容易验证满足三条件。

  2. S = { ( a , b ) ∣ a , b ∈ Z , b ≠ 0 } S=\{(a,b)\mid a,b\in Z,b\neq 0\} S={(a,b)a,bZ,b=0},在 S S S上定义等价关系: ( a , b ) ∼ ( c , d )   i f   a d = b c (a,b)\sim (c,d)\ \mathrm{if}\ ad=bc (a,b)(c,d) if ad=bc,这个等价关系的动机来自于分数,实际上表示分数相等 a / b = c / d a/b=c/d a/b=c/d

划分Parititon

集合的划分指的是集合 S S S分为几个不相交的,并集为 S S S的子集。

定义划分的目的是为了引入等价类的划分方式。

Theorem 0.7 Equivalence Classes Partition

集合 S S S上定义的一个等价关系的等价类构成集合 S S S的一个划分。反之也成立,对于集合 S S S的任何划分,都可以据此定义一个等价关系。

定理理解:这个定理实际上说明等价关系的定义和集合划分是等效的操作。

证明:这个定理的反之这里就不作证明了,因为可以用比较无脑的方式给出,直接定义等价关系就是属于某个划分后的子集就行。

对于等价关系如何形成划分的证明,要证明等价类无交集且并集是 S S S

首先等价类肯定无交集,因为传递性导致如果两个等价类有交集,这两个等价类就是一个等价类。

所有等价类的并集是 S S S就更好证明了,对所有元素各自求一个等价类,这些等价类必然包含这些元素,那么他们的并必然是 S S S

函数与映射

接下来介绍一下函数,函数在数学众多领域中都是至关重要的,各种关于函数的记号却有略微差别,这里约定好关于函数的定义和记号。

Definition Function (Mapping)

A function (or mapping) ϕ \phi ϕ for a set A A A to a set B B B is a rule that assigns to each element a a a of A A A exactly one element b b b of B B B. A A A is called the domain of ϕ \phi ϕ, and B B B is called a range of ϕ \phi ϕ. if ϕ \phi ϕ assigns b b b to a a a, b b b is called the image of a a a under ϕ \phi ϕ. The subset of B B B comprising all the images of elements of A A A is called the image of A A A under ϕ \phi ϕ

定义理解:

  • 函数和映射是一个意思,是针对两个集合的一个规则,这个规则能让集合 A A A的任意元素,在 B B B集合中找到对应的值。
  • 集合 A A A被称为定义域,集合 B B B被称为值域。
  • 元素 a a a被映射为元素 b b b,那么 b b b被叫做像。
  • A A A集合中所有元素在 B B B中的像的集合,被称为 A A A的像。

映射符号

两集合映射的表示: ϕ : A → B \phi:A\to B ϕ:AB
元素间映射的表示: ϕ : a → b \phi:a\to b ϕ:ab or ϕ ( a ) = b \phi(a)=b ϕ(a)=b

函数的复合

Let ϕ : A → B \phi : A\to B ϕ:AB and φ : B → C \varphi :B\to C φ:BC. The composition φ ϕ \varphi\phi φϕ is a mapping from A A A to C C C.
We denote that ( f ∘ g ) ( x ) = f ( g ( x ) ) (f\circ g)(x)=f(g(x)) (fg)(x)=f(g(x))

函数的一种分类

约定讨论函数 ϕ : A → B \phi :A\to B ϕ:AB

  • one-to-one function: ∀ a 1 , a 2 ∈ A , ϕ ( a 1 ) = ϕ ( a 2 ) ⟶ a 1 = a 2 \forall a_1, a_2\in A, \phi (a_1)=\phi (a_2)\longrightarrow a_1=a_2 a1,a2A,ϕ(a1)=ϕ(a2)a1=a2
  • Function from A A A onto B B B: ∀ b ∈ B , ∃ a ∈ A   s u c h   t h a t   ϕ ( a ) = b \forall b\in B, \exists a\in A\ \mathrm{such\ that}\ \phi (a)=b bB,aA such that ϕ(a)=b

理解:这两种映射可以翻译为“一一的”和“到上的”,实际上对应的是单射和满射。“一一的”代表像相同则原像相等,即不能有多个原像映射到同一个像。“到上的”即集合 B B B中所有元素都是像,也即是 A A A的像等于值域。

函数的一些特性

  • 映射满足结合律: γ ( β α ) = ( γ β ) α \gamma (\beta\alpha)=(\gamma\beta )\alpha γ(βα)=(γβ)α
  • 如果 α \alpha α β \beta β都是一一的,那么 β α \beta\alpha βα也是
  • 如果 α \alpha α β \beta β都是到上的,那么 β α \beta\alpha βα也是
  • 如果 α \alpha α是一一到上的(双射),那映射存在逆
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值