演化计算笔记

本文详细介绍了遗传算法的传统过程,包括解空间确定、编码方式(如二进制和实数向量编码)、适应度函数、父体选择策略(轮盘赌等)以及遗传算子设计,探讨了在优化问题中的应用,如静态、动态和自适应惩罚函数的使用。
摘要由CSDN通过智能技术生成

遗传算法:(传统过程)

一、解空间确定

二、编码:二进制编码、实数向量编码

三、初始化

四、计算适应度值

五、父体选择:轮盘赌

六、遗传算子:杂交、变异

技术细节:

一、编码:(用自然的方式编码)

数值优化时二进制好,TSP时自然数编码好

二进制编码确定位数方法:


依上式得到第j个变量xj编码为二进制时所需二进制位数。总的二进制位数为所有之和

缺点:

1.相邻整数的二进制编码的hamming距离较大,可以采用gray编码克服

2.在高维高精度问题求解中,串长太长

实数向量编码,排列编码,结构编码,树编码,图编码


二、适应函数

1.原始适应函数,即目标函数

2.简单适应函数,加减常量,倒数等

3.适应值比例变换f'(v)=g(f(v))

(1)线性比例变换:f'(v)=af(v)+b,ab可以根据最大最小平均适应度值的限定来确定,使得变换后的适应函数在我们要求范围内

(2)σ截断:,其中σ为标准差

(3) 幂函数变换:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值