概率中的独立与相关:相互独立、条件独立、协方差、相关系数

本文介绍了概率论中的关键概念,包括相互独立事件和条件独立事件的定义,以及协方差和相关系数如何量化随机变量之间的线性相关性。独立事件的概率可以通过概率乘法规则确定,而条件独立则涉及给定第三个变量时的独立性。协方差为零意味着变量不相关,但不相关并不一定意味着独立。
摘要由CSDN通过智能技术生成

概念定义

(随机变量之间)相互独立:两个随机变量 x 和 y ,如果它们的概率分布可以表示成两个因子的乘积形式,并且一个因子只包含 x 另一个因子只包含 y ,我们就称这两个随机变量是相互独立的。

A A A B B B 是两事件,如果满足等式 P ( A B ) = P ( A ) P ( B ) P(AB) = P(A)P(B) P(AB)=P(A)P(B)
则称事件 A A A B B B 相互独立。

(随机变量之间)条件独立: 如果关于 x 和 y 的条件概率分布对于 z 的每一个值都可以写成乘积的形式,那么这两个随机变量 x 和 y 在给定随机变量 z 时是条件独立的.

A , B , C A,B,C

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值