概率论与数理统计 | (8) 协方差和相关系数

目录

1. 方差的性质

2. 协方差与相关系数

3. 不相关与独立

4. 矩、协方差矩阵、多元正态分布的性质


1. 方差的性质

  • 性质

1)c是常数,D(c) = 0

2)  设X是随机变量,c是常数,则有D(cX) = c^2D(X)  (D(-X) = D(X))

3) 设X,Y是两个随机变量,则D(X+Y) = D(X) + D(Y) + 2\cdot E([X-E(X)][Y-E(Y)])

特别地,若X,Y相互独立,则有D(X+Y) = D(X) + D(Y)

综合上述三项, 设X,Y相互独立, a,b,c是常数,则:D(aX+bY+c) = a^2D(X) + b^2D(Y)  (D(X+c) = D(X))

推广到任意有限个独立随机变量线性组合的情况:

                                         D(c_0+\sum_{i=1}^{n}c_iX_i) = \sum_{i=1}^{n}c_i^2D(X_i)

4) D(X)=0 \Leftrightarrow P(X=c)=1 ,c=E(X)

  • 证明

  • 例题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值