概率论与数理统计 | (8) 协方差和相关系数

目录

1. 方差的性质

2. 协方差与相关系数

3. 不相关与独立

4. 矩、协方差矩阵、多元正态分布的性质


1. 方差的性质

  • 性质

1)c是常数,D(c) = 0

2)  设X是随机变量,c是常数,则有D(cX) = c^2D(X)  (D(-X) = D(X))

3) 设X,Y是两个随机变量,则D(X+Y) = D(X) + D(Y) + 2\cdot E([X-E(X)][Y-E(Y)])

特别地,若X,Y相互独立,则有D(X+Y) = D(X) + D(Y)

综合上述三项, 设X,Y相互独立, a,b,c是常数,则:D(aX+bY+c) = a^2D(X) + b^2D(Y)  (D(X+c) = D(X))

推广到任意有限个独立随机变量线性组合的情况:

                                         D(c_0+\sum_{i=1}^{n}c_iX_i) = \sum_{i=1}^{n}c_i^2D(X_i)

4) D(X)=0 \Leftrightarrow P(X=c)=1 ,c=E(X)

  • 证明

  • 例题

 

2. 协方差与相关系数

设X, Y是两个随机变量, 则有:

D(X+Y) = D(X) + D(Y) + 2\cdot E([X-E(X)][Y-E(Y)])

特别地,若X,Y相互独立,则有D(X+Y) = D(X) + D(Y)。即当X与Y相互独立时,有E([X-E(X)][Y-E(Y)]) = 0;当X与Y不相互独立时,E([X-E(X)][Y-E(Y)]) \neq 0.(X,Y的协方差)

  • 定义

数值E([X-E(X)][Y-E(Y)])称为随机变量X和Y的协方差,记作Cov(X,Y),即:

此时D(X+Y) = D(X)+D(Y)+2Cov(X,Y).

协方差Cov( X ,Y )反映了随机变量X与Y的线性相关性:

1)当Cov( X ,Y )>0时,X与Y正相关。

2)当Cov( X ,Y )<0时,X与Y负相关。

1)当Cov( X ,Y )=0时,X与Y不相关。

  • 例题

  • 性质

1)Cov(X,Y) = Cov(Y,X)

2)  Cov(X,X) = D(X)

3)  Cov(aX,bY) = ab Cov(X,Y)       a,b是两个实数

4)Cov(X_1+X_2,Y) = Cov(X_1,Y)+Cov(X_2,Y)

  • 相关系数

协方差是有量纲的数字特征,为了消除其量纲的影响,引入一个新概念:

                                   \rho _{XY} = \frac{Cov(X,Y)}{\sqrt{D(X)D(Y)}}

称为随机变量X与Y的相关系数,是没有量纲的。

性质:

 

3. 不相关与独立

  • 定义

\rho_{XY}=0,则称随机变量X与Y不相关或0相关,

\rho _{XY} = \frac{Cov(X,Y)}{\sqrt{D(X)D(Y)}}

随机变量X,Y不相关或0相关的等价条件有:

1)Cov(X,Y) = 0

2)  Cov(X,Y) = E(XY)-E(X)E(Y)    E(XY) = E(X)E(Y)

  • 性质

若X与Y相互独立,则X与Y不相关;反之不然。

证明:

4. 矩、协方差矩阵、多元正态分布的性质

  • 多元随机变量的数字特征

  • n元正态随机变量的联合概率密度的矩阵表示

  • n元正态随机变量的四条性质

  • 例题

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值