一、红黑树
1. 红黑树的概念及性质
概念
红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍,因而是接近平衡的。
性质
- 每个结点不是红色就是黑色
- 根节点是黑色的
- 如果一个节点是红色的,则它的两个孩子结点是黑色的
- 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点
- 每个叶子结点都是黑色的(此处的叶子结点指的是空结点)
思考:为什么满足上面的性质,红黑树就能保证:其最长路径中节点个数不会超过最短路径节点
个数的两倍?
2、红黑树节点的定义(描述)
enum colour
{
RED,
BLACK
};
template<class K, class V>
struct RBTreeNode
{
RBTreeNode<K, V>* _left;
RBTreeNode<K, V>* _right;
RBTreeNode<K, V>* _parent;
pair<K, V> _kv;
colour _col;
RBTreeNode(const pair<K, V>& kv)
:_left(nullptr)
,_right(nullptr)
,_parent(nullptr)
,_kv(kv)
,_col(RED)
{}
};
思考:在节点的定义中,为什么要将节点的默认颜色给成红色的?
3、红黑树的插入操作
红黑树是在二叉搜索树的基础上加上其平衡限制条件,因此红黑树的插入可分为两步:
- 按照二叉搜索的树规则插入新节点;
- 检测新节点插入后,红黑树的性质是否造到破坏;
因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何
性质,则不需要调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连
在一起的红色节点,此时需要对红黑树分情况来讨论:
约定:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点
情况一: cur为红,p为红,g为黑,u存在且为红
解决方式:将p,u改为黑,g改为红,然后把g当成cur,继续向上调整,具体操作见下图:
情况二: cur为红,p为红,g为黑,u不存在/u存在且为黑
说明u的两种情况:
- 如果u不存在,则cur一定是新插入的节点,因为如果cur不是新插入的节点,那么cur和p一定有一个节点是黑色的,那么就不满足性质4:每条路径的所有黑色节点数量相同
- 如果u存在且其颜色也为黑色,那么cur原来一定是黑色,现在看到红色是由黑色变过来的
情况二会有四种子情况,不同的解决方式也不同,具体见下图:
大情况 | 具体小情况 | 解决方式 |
u存在且为红 | cur为红,p为红,g为黑,u存在且为红 | 将p,u改为黑,g改为红,然后把g当成cur,继续向上调整 |
u不存在或u存在且为黑 | p为g的左孩子,cur为p的左孩子 (LL型) | 以g做右单旋转,p变黑,g变红 |
p为g的左孩子,cur为p的右孩子(LR型) | p做左单旋转,转化为LL型,然后g做右单旋,cur变黑,g变红 | |
p为g的右孩子,cur为p的右孩子(RR型) | 以g做左单旋转,p变黑,g变红 | |
p为g的右孩子,cur为p的左孩子(RL型) | p做右单旋转,转化为RR型,然后g做左单旋,cur变黑,g变红 |
bool Insert(const pair<K, V>& kv)
{
if (nullptr == _root)
{
_root = new Node(kv);
_root->_col = BLACK;
return true;
}
Node* parent = nullptr;
Node* cur = _root;
while(cur)
{
if (cur->_kv.first < kv.first)
{
parent = cur;
cur = cur->_right;
}
else if (cur->_kv.first > kv.first)
{
parent = cur;
cur = cur->_left;
}
else
{
return false;
}
}
cur = new Node(kv);
cur->_col = RED;
if (parent->_kv.first < kv.first)
{
parent->_right = cur;
}
else
{
parent->_left = cur;
}
cur->_parent = parent;
//调整
while (parent && parent->_col == RED)
{
Node* grandfather = parent->_parent;
if (parent == grandfather->_left)
{
Node* uncle = grandfather->_right;
if (uncle && uncle->_col == RED)
{
parent->_col = BLACK;
uncle->_col = BLACK;
grandfather->_col = RED;
cur = grandfather;
parent = cur->_parent;
}
else// (nullptr == uncle || uncle && uncle->_col == BLACK)
{
if (cur == parent->_left)
{
RotateR(grandfather);//右单旋
parent->_col = BLACK;
grandfather->_col = RED;
}
else
{
RotateL(parent);//左单旋
RotateR(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
}
}
else
{
Node* uncle = grandfather->_left;
if (uncle && uncle->_col == RED)
{
parent->_col = BLACK;
uncle->_col = BLACK;
grandfather->_col = RED;
cur = grandfather;
parent = cur->_parent;
}
else// (nullptr == uncle || uncle && uncle->_col == BLACK)
{
if (cur == parent->_right)
{
RotateL(grandfather);
parent->_col = BLACK;
grandfather->_col = RED;
}
else
{
RotateR(parent);
RotateL(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
}
}
_root->_col = BLACK;
}
return true;
}
左 、右单旋不清楚,请移步至AVL树
4、红黑树的验证
红黑树的检测分为两步:
-
检测其是否满足二叉搜索树(中序遍历是否为有序序列)
-
检测其是否满足红黑树的性质
void Height()
{
cout << "最大高度为::" << _maxheight(_root) << endl;
cout << "最小高度为::" << _minheight(_root) << endl;
}
bool IsValidRBTree()
{
if (nullptr == _root)
return true;
if (_root->_col != BLACK)
//如果根节点不为黑色,则违反性质 2、根节点是黑色的
return false;
Node* cur = _root;
size_t BlackCount = 0;
size_t k = 0;
//记录最左路路径的黑色节点个数
while (cur)
{
if (cur->_col == BLACK)
BlackCount++;
cur = cur->_left;
}
return _IsValidRBTree(_root,BlackCount,k);//检查性质3和4
}
int _maxheight(Node* root)
{
if (nullptr == root)
return 0;
int leftheight = _maxheight(root->_left);
int rightheight = _maxheight(root->_right);
return leftheight > rightheight ? leftheight + 1 : rightheight + 1;
}
int _minheight(Node* root)
{
if (nullptr == root)
return 0;
int leftheight = _maxheight(root->_left);
int rightheight = _maxheight(root->_right);
return leftheight < rightheight ? leftheight + 1 : rightheight + 1;
}
bool _IsValidRBTree(Node* root,const size_t BlackCount, size_t k)
{
if (nullptr == root)
{
if (k != BlackCount)
return false;
return true;
}
if (root->_col == BLACK)
++k;
if (root->_col == RED && root->_parent && root->_parent->_col == RED)
{
cout << "违法了不可存在连续的红节点的性质" << endl;
return false;
}
return _IsValidRBTree(root->_left, BlackCount, k) && _IsValidRBTree(root->_right, BlackCount, k);//递归判断每一条路径
}