Math.sin(x) x 的正玄值。返回值在 -1.0 到 1.0 之间;
Math.cos(x) x 的余弦值。返回的是 -1.0 到 1.0 之间的数;
这两个函数中的X 都是指的“弧度”而非“角度”,弧度的计算公式为: 2*PI/360*角度
;
30° 角度 的弧度 = 2*PI/360*30
1、如何得到圆上每个点的坐标?
解决思路:根据三角形的正玄、余弦来得值;
假设一个圆的圆心坐标是(a,b),半径为r,
则圆上每个点的X坐标=a + Math.sin(2*Math.PI / 360) * r ;Y坐标=b + Math.cos(2*Math.PI / 360) * r ;
2、如何求时钟的秒针转动一圈的轨迹?
假设秒针的初始值(起点)为12点钟方向,圆心的坐标为(a,b)。
解决思路:一分钟为60秒,一个圆为360°,所以平均每秒的转动角度为 360°/60 = 6°;
for(var times=0; times<60; times++) {
var hudu = (2*Math.PI / 360) * 6 * times;
var X = a + Math.sin(hudu) * r;
var Y = b - Math.cos(hudu) * r // 注意此处是“-”号,因为我们要得到的Y是相对于(0,0)而言的。
}
3、数学中的Sin和Cos是什么意思
这两个都是基本的三角函数,在初中三年级应该会接触到的,其中sin是正弦函数,cos是余弦函数,具体的含义如下:
正弦函数sinA:表示在一个直角三角形中,∠A(非直角)的对边与三角形的斜边的比;
余弦函数cosA:表示在一个直角三角形中,∠A(非直角)的邻边与三角形的斜边的比;
其在下图中的表示就是(其中∠C=90°):
当然了,正弦和余弦函数能在直角三角形中具体表示,但不代表他们只能在直角三角形汇总表示,任何一个角度都是有正弦和余弦值的包括钝角以及大于360°的角,也就是说,上述式子中A的结果可以是任何实数,包括负数和0。
补充知识:正切函数
,这个函数也是经常用到的,其式子中的A也是可以大于360°,但是并不是全体实数,因为有几个角是没有正切值的,比如90°,A不能取的值应该是A≠90°+180°×n,n取整数。