自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(35)
  • 收藏
  • 关注

原创 Git位置变动,右键Git Bash Here不可用

Git位置变动,右键Git Bash Here不可用

2022-08-04 11:09:57 327

原创 XML概述

XML概述

2022-08-02 13:21:54 32

原创 virtualbox中安装的CentOS6无法ping通主机的问题

virtualbox中安装的CentOS6无法ping通主机的问题

2022-07-19 13:48:21 367

原创 安装VS2019时出现“无法下载安装文件。请检查Internet连接,然后重试”问题

安装VS2019时出现“无法下载安装文件。请检查Internet连接,然后重试”问题

2022-07-18 17:58:14 2126

原创 科研论文写作工具推荐

Create LaTeX tables online – TablesGenerator.comEasily create even complex LaTeX tables with our online generator – you can paste data from a spreadsheet, merge cells, edit borders and more.https://www.tablesgenerator.com/

2022-05-18 23:17:36 429

原创 论文阅读:Gradient-Induced Co-Saliency Detection(ECCV2020)

论文阅读:Gradient-Induced Co-Saliency Detection(ECCV2020)

2021-12-30 21:29:38 1750 1

原创 attention综述论文阅读:An Overview of the Attention Mechanisms in ComputerVision

1. Introduction注意机制起源于对人类视觉的研究。在认知科学中,由于信息处理的瓶颈,人类只能注意到所有可见信息的一部分。受这种视觉注意机制的启发,研究者们试图寻找视觉选择性注意模型来模拟人类的视觉感知过程,从而模拟人类在观察图像和视频时的注意分布,并扩展其应用。以计算机视觉领域为例,深度学习与视觉注意机制相结合的研究大多集中在mask的使用上。mask的原理是将图像数据中的关键特征用另一层新的权值来识别。通过学习和训练,深度神经网络可以学习到每一个新图像中需要注意的区域,从而形成注意。

2021-12-06 12:03:50 2883

原创 论文阅读:Dual Attention Network for Scene Segmentation(CVPR2019)

论文阅读:Dual Attention Network for Scene Segmentation(CVPR2019)针对本篇论文的演讲PPT,看完发现我不用在写博客了,这篇已经讲的很清楚了https://blog.csdn.net/mieleizhi0522/article/details/83111183GitHub代码http://Dual Attention Network for Scene Segmentation论文原文https://arxiv.org/pdf/1809.02983

2021-12-03 21:42:44 129

原创 机器学习中样本不平衡问题的解决

https://m.nowcoder.com/questions?uuid=31f2dc86be204260a0d01c79a88a7d78参考西瓜书,解决类别不平衡书中提出三种方法: 1.下采样 2.过采样 3.阈值偏移 所以我觉得第一个也应该选吧主要三个方面,数据,模型和评估方法。数据上过采样和欠采样,使之均衡;模型上选对样本不均衡问题不敏感的模型,如决策树; 或者调整分类阈值,使得更倾向与类别少的数据评估方法,比如ROC或者F1得分难易样本不平衡的问...

2021-08-19 00:01:30 67

原创 python百问百答(面试)

1- python中list、tuple、dict、set等类型有什么区别?详细可看这个list、set和dict都是可变数据类型,tuple是不可变数据类型。不可变数据类型更改后地址发生改变,可变数据类型更改地址不发生改变。list:python内置的数据类型,有序集合,随时增删。包含的数据类型可以不同tuple 元祖:python内置的数据类型,有序列表,一旦初始化,无法修改。tuple不可变,所以代码更安全。包含的数据类型可以不同。表示:空的tuple1=();一个元素tuple.

2021-08-18 11:35:10 228

原创 leetcode刷题常用C++函数

1. 字符串截取截取下标从2(第3个字符)开始截取3个字符的字符串string str = "ABCDEFG";string cut= str.substr(2,3);最终,cut="CDE",即从下标为2开始向后数3位2. 字符串扩容string s(len);s.resize(len+len2);...

2021-08-13 20:01:00 264

原创 python基础知识

1.编译型语言与解释型语言的真正区别2.基本数据类型Python3 的六个标准数据类型中:不可变数据(3 个):Number(数字)、String(字符串)、Tuple(元组); 可变数据(3 个):List(列表)、Dictionary(字典)、Set(集合)内置的 type() 函数可以用来查询变量所指的对象类型>>> a, b, c, d = 20, 5.5, True, 4+3j>>> print(type(a), type(b), typ

2021-08-11 09:03:44 27

原创 朴素贝叶斯 后验概率最大化与期望风险最小化

关于李航机器学习中4.1.2节中后验概率最大化含义的理解补充

2021-08-10 16:22:50 404

原创 KNN-k近邻算法

关于如何划分区域,看这篇:李航老师《统计学习方法》第二版第三章课后题答案kd树算法的辅助理解,看这篇:K近邻算法(k-nearest neighbor,KNN)之前都只理解了如何通过kd树找最近邻点,没看明白怎么通过kd树找k个最近点,结合文章【量化课堂】kd 树算法之详细篇,终于看明白了,主要思想就是维护一个大小为k的最大堆,在kd树中搜索时逐步把节点加入堆中,当堆满(有k个点时)且距离小于堆顶时,交换堆顶和新找到的点,循环这个过程。图截自上篇参考文章。...

2021-08-09 21:26:30 28

原创 代码注释A2-Nets: Double Attention Networks

github pytorch代码透过代码看其如何实现双注意力计算self.c_m = c_mself.c_n = c_nself.in_channels = in_channelsself.reconstruct = reconstructself.convA = nn.Conv2d(in_channels, c_m, kernel_size = 1)self.convB = nn.Conv2d(in_channels, c_n, kernel_size = 1)self.conv

2021-07-16 11:11:16 343

原创 关于BN、LN、GN

BN层的作用就是通过参数控制了每一层输出的均值和标准差。BN的实质是对一个batchsize中的所有batch,把所有图片的相同通道的值相加,然后求均值和方差,然后对每个点做归一化,具体可参考博客,讲的很详细。对于N*C*W*H的输入,进行BN操作时会计算出C个均值和方差,每N*W*H计算出一个均值和方差,再用计算出来的均值和方差对N*W*H个点进行归一化。BN其实并没有解决ICS问题,而是引入了参数γ和β去调节中间层输出的均值和标准差,γ和β会在训练过程中不断更新,意味着均值和标准差也在不断变

2021-07-15 15:54:41 922

原创 SSH 连接远端 Ubuntu 服务器设置防火墙,实现只允许白名单访问

https://blog.csdn.net/xyp632/article/details/118224488

2021-07-13 16:38:54 244

原创 CV中的注意力机制

它的成功主要是由于一个合理的假设,即人类的视觉不会倾向于一次性处理完整的图像;相反,人们只关注整个视觉空间的选择性部分。[1]Spatial Transformer Network空间注意力模型(spatial attention):不是图像中所有的区域对任务的贡献都是同样重要的,只有任务相关的区域才是需要关心的,比如分类任务的主体,空间注意力模型就是寻找网络中最重要的部位进行处理。STN网络(Spatial Transformer Network,通过学习输入的形变,从而完成适合任务的预处理操

2021-07-11 16:24:25 346

原创 关于凸优化与机器学习理解笔记

梯度下降法和牛顿法等基于导数作为判断依据的优化算法,找到的都是导数为0的点,但是梯度为0只是取得极值的必要条件而非充分条件。如果我们将这个必要条件变成充分条件,即:x点的梯度等于0=》x是问题的最优解若对于目标函数,我们限定是凸函数;对于优化变量的可行域(包括目标函数对定义域的约束),我们限定为凸集。同时满足这两个限制条件的最优化问题成为凸优化问题,这类问题有个非常好的性质,那就是局部最优解一定是全局最优解。关于凸集的概念:对于n维空间中点...

2021-07-10 17:09:42 111

原创 过拟合与欠拟合

过拟合:模型对于训练数据拟合过当的情况。其表现为模型在训练数据上表现很好,但是在测试数据上表现较差。欠拟合:模型对数据拟合不够。其表现为模型在训练数据和测试数据上都表现不好。jie...

2021-06-23 15:17:02 133

原创 常用Linux命令:linux服务器上磁盘挂载与磁盘空间查看

系统重启后应加sudo命令blkid查看各分区的UUID

2021-06-23 14:29:18 547

原创 论文阅读:Group Collaborative Learning for Co-Salient Object Detection(CVPR2021)

论文原文 作者提供的代码

2021-06-03 20:24:38 149

原创 论文阅读:Co-attention CNNs for Unsupervised Object Co-segmentation(IJCAI-18)

论文原文

2021-05-31 21:37:29 411

原创 论文阅读:Group-wise Deep Co-saliency Detection(IJCAI-17)

论文原文这是IJCAI-17年的一篇关于共显著性检测的论文,它以一组图片se

2021-05-31 14:14:44 119

原创 论文笔记:Deep Object Co-Segmentation(ACCV2018)

Deep Object Co-Segmentation(ACCV2018) 论文原文 代码双分支的encoder 、mutual correlation network和decoder原文中关于网络中间mutual correlation layer的阐述没看懂,不知是如何计算出相关性的由两张图片的协同分割扩展到组协同分割(group-wise co-segmentation):对一组图片I={,..,},其中的图片In和另外K<=N-1张图片配对,然后用DOCS网络预测每

2021-05-12 15:25:38 207

原创 vscode配置C++环境时出现的问题:gcc.exe: error: CreateProcess: No such file or directory

vscode配置C++环境时出现的问题:gcc.exe: error: CreateProcess: No such file or directoryc_cpp_properties.json{ "configurations": [ { "name": "Win32", "includePath": [ "C:\\MinGW\\include\\*", "

2021-03-28 12:12:01 4698 3

原创 pytorch网络训练中的两个loss(未验证完)

print('#########mapNet#########') for name,param in self.mapNet.named_parameters(): if name =='forward1.0.weight': prin...

2021-03-23 20:25:54 1073

原创 使用自定义loss时出现Nan和-inf问题

使用自定义loss时,训练几代后就出现问题,loss计算中用了torch.sqrt()来开根号,在网络训练初期是没有什么问题的loss也都正常下降,但是训练到一半会出现NAN。loss本身计算时不出现Nan,但是网络输出为Nan和-inf值参考博客,初步认为是开根号中值为0的情况,修改代码:e = 1e-6torch.sqrt(a + e)改完后,仍然存在Nan的问题进一步检查后,发现训练数据的label存在Nan值如上图,就是一个label例子,计算出来的dp 出现N

2020-12-08 15:45:05 1313

原创 使用BCEWithLogitsLoss()时RuntimeError: result type Float can‘t be cast to the desired output type Long

使用BCEWithLogitsLoss()时RuntimeError: result type Float can't be cast to the desired output type Long使用BCEWithLogitsLoss(output,target),output 为float类型,target为int64,报错RuntimeError: result type Float can't be cast to the desired output type Long参考提问,提到

2020-11-20 10:10:21 21161 7

原创 iteration、batchsize与epoch

iteration = epoch * batch_sizeiteration为迭代次数(更新次数)

2020-11-08 19:43:28 57

原创 卷积与反卷积的padding设置与尺寸计算

参考https://blog.csdn.net/qq_41368247/article/details/86626446由于卷积核滑动过程中,边界情况的不确定,使得在运算步长大于1的反卷积时会出现多种合法输出尺寸,pytorch的反卷积层提供了output_padding供使用者选择输出,一般情况下我们希望输入输出尺寸以步长为比例,因此output_padding一般取stride-1,同时padding取 (kernel_size - 1)/2 。torch.nn.Conv2d输出大小:(W.

2020-06-19 01:04:47 493 3

原创 一个问题记录:RuntimeError: Tensor: invalid storage offset at /pytorch/aten/src/THC/generic/THCTensor.c:759

pytorch编程中,运行时报错RuntimeError: Tensor: invalid storage offset at /pytorch/aten/src/THC/generic/THCTensor.c:759上网查找后发现都说时reshape函数的问题,把reshape换成view即可。#用reshapeaa = torch.reshape(bb, cc)#用 vie...

2020-05-04 18:28:52 899

原创 论文阅读:Semantic Aware Attention Based Deep Object Co-segmentation(ACCV2018)

协同分割论文:Semantic Aware Attention Based Deep Object Co-segmentation(ACCV2018)引入注意力机制辅助深度神经网络实现协同分割,学习通道间的相关性并进行增强或抑制。在深度神经网络中,越抽象的语义信息往往被被编码在越深的层次中,不同通道包含不同的语义含义。根据这一观察结果,作者认为,通过在深层特征中应用注意力机制(如果一个c...

2020-04-11 23:29:01 861 2

原创 论文阅读:Group-wise Deep Object Co-Segmentation with Co-AttentionRecurrent Neural Network(ICCV2019)

协同分割论文:Group-wise Deep Object Co-Segmentation with Co-AttentionRecurrent Neural Network(ICCV2019)http://openaccess.thecvf.com/content_ICCV_2019/html/Li_Group-Wise_Deep_Object_Co-Segmentation_With_Co...

2020-04-11 17:24:23 1049

原创 论文阅读笔记:Deep Object Co-segmentation via Spatial-Semantic Network Modulation(AAAI2020)

提出了一种基于空间和语义调制的目标共着色深度网络结构。采用骨干网提取多分辨率图像特征。利用相关图像的多分辨率特征作为输入,设计了一个空间调制器来学习每个图像的掩码。空间调制器通过无监督学习捕获图像特征描述符之间的相关性。学习掩码可以在抑制背景的同时粗略地定位共享前景对象。对于语义调制器,我们将其建模为一个监督的图像分类任务。提出了一种分级的二阶池化模块,用于对图像特征进行分类转换。两个调制器的输出...

2020-04-10 13:33:03 918 3

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除