参考https://blog.csdn.net/qq_41368247/article/details/86626446
由于卷积核滑动过程中,边界情况的不确定,使得在运算步长大于1的反卷积时会出现多种合法输出尺寸,pytorch的反卷积层提供了output_padding供使用者选择输出,一般情况下我们希望输入输出尺寸以步长为比例,因此output_padding一般取stride-1,同时padding取 (kernel_size - 1)/2 。
torch.nn.Conv2d
输出大小: (W − kernel_size + 2*padding )/stride+1
反卷积的尺寸计算
torch.nn.ConvTranspose2d