协同分割论文阅读:Group-wise Deep Object Co-Segmentation with Co-AttentionRecurrent Neural Network(ICCV2019)
没有找到该论文原作者的代码实现,只找到一个其他人复现的代码github代码,但是训练出的效果没有达到论文中的效果
目录
1.贡献点
提出一种利用协同注意力和循环网络结构实现协同分割的方法。
(1)引入递归网络结构进行协同分割,实现一组(而非一对)图像的协同分割。
(2)提出协同注意力递归单元(CARU),处理图像中协同注意对象在外观和位置上的变化。
(3)提出了一个group-wise训练目标,利用协同对象相似性和图形-背景差异作为额外的监督。
2.总体框架
(1)我们的网络首先用一个CNN网络提取所有图像的语义特征;
(2)然后由两个分支处理特征。单个图像表示分支对每个图像分别进行处理,以学习其独特的属性。同时使用一个设计好的协同注意力循环单元(CARU))对所有图像利用图像间的协同注意来生成这组图片的group feature。
(3)同时,group-wise表示分支可以通过引入递归结构,逐步学习组内的所有图像,从而学习一种鲁棒的group-wis表示。
(4)将group-wise特征广播到每一张单独的图像上,并与其特征融合&