论文阅读:Group-wise Deep Object Co-Segmentation with Co-AttentionRecurrent Neural Network(ICCV2019)

本文介绍了ICCV2019论文中的Group-wise Deep Object Co-Segmentation方法,它利用Co-Attention Recurrent Neural Network(CARU)处理图像组的协同分割。通过CNN提取特征,SIR分支学习单个图像表示,而CARU分支捕捉图像间的协同信息。使用group-wise训练目标和triplet loss提升分割精度。在iCoseg数据集上表现出色。
摘要由CSDN通过智能技术生成

协同分割论文阅读:Group-wise Deep Object Co-Segmentation with Co-AttentionRecurrent Neural Network(ICCV2019)

论文原文

 

没有找到该论文原作者的代码实现,只找到一个其他人复现的代码github代码,但是训练出的效果没有达到论文中的效果

目录

1.贡献点

2.总体框架

3.实现细节

4.Loss函数

5.训练细节


1.贡献点

提出一种利用协同注意力和循环网络结构实现协同分割的方法。

(1)引入递归网络结构进行协同分割,实现一组(而非一对)图像的协同分割。

(2)提出协同注意力递归单元(CARU),处理图像中协同注意对象在外观和位置上的变化。

(3)提出了一个group-wise训练目标,利用协同对象相似性和图形-背景差异作为额外的监督。

2.总体框架

(1)我们的网络首先用一个CNN网络提取所有图像的语义特征

(2)然后由两个分支处理特征。单个图像表示分支对每个图像分别进行处理,以学习其独特的属性。同时使用一个设计好的协同注意力循环单元(CARU))对所有图像利用图像间的协同注意来生成这组图片的group feature

3)同时,group-wise表示分支可以通过引入递归结构,逐步学习组内的所有图像,从而学习一种鲁棒的group-wis表示。

4)将group-wise特征广播到每一张单独的图像上,并与其特征融合&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值