【论文学习笔记-13】GwcNet:Group-wise Correlation Stereo Network(2019CVPR)

GwcNet是2019年CVPR上提出的一种改进的立体匹配方法,解决了传统相关性计算的局限性。它采用组内积的方式计算特征之间的相关性,创建了一个4DCostVolume,减少了信息损失。此外,通过沙漏网络进行3D聚合,提高了计算效率,超越了先前的技术。该方法的关键贡献包括:提出组相关性、使用沙漏网络加速以及实现高效计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【论文学习笔记-13】GwcNet:Group-wise Correlation Stereo Network(2019CVPR)

以往的立体匹配存在的问题:

相关性计算给每个视差值只提供了一个单通道的相关图。使用GCNet和PSMNet等文章中的拼接+3DCONV的方法的参数量和计算量很大,其他的方法要通过传统的cost计算方法,很难融入端到端网络中。

本文提出了简单但高效的group-wise correlation方法。首先提取多层次的特征并叠加,获取高位的特征表示fl,fr。然后特征被分为若干组,然后对应组之间进行互相关操作,获得group-wise correlation maps,最后correlation maps打包形成最后的4D Cost Volume。多重matching cost计算能减少信息的损失。

Contribution

①提出了group wise的correlation来建立cost volume。

②使用了沙漏refine network来提高速度(没有额外消耗时间)

③效果超过了之前的方法③计算速度比3D CONV强大。

Network

在这里插入图片描述

网络包含四个部分,特征提取,cost volume,3D 聚合模块和视差预测。

特征提取使用了类ResNet网络(PSMNet采用),使用了空洞卷积和金字塔池化模块。最后的三层特征层被叠加起来,得到320通道的featuremap。

CostVolume由两个部分组成,第一个部分是和PSMNet一样的特征拼接(错位拼接?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值