【论文学习笔记-13】GwcNet:Group-wise Correlation Stereo Network(2019CVPR)
以往的立体匹配存在的问题:
相关性计算给每个视差值只提供了一个单通道的相关图。使用GCNet和PSMNet等文章中的拼接+3DCONV的方法的参数量和计算量很大,其他的方法要通过传统的cost计算方法,很难融入端到端网络中。
本文提出了简单但高效的group-wise correlation方法。首先提取多层次的特征并叠加,获取高位的特征表示fl,fr。然后特征被分为若干组,然后对应组之间进行互相关操作,获得group-wise correlation maps,最后correlation maps打包形成最后的4D Cost Volume。多重matching cost计算能减少信息的损失。
Contribution
①提出了group wise的correlation来建立cost volume。
②使用了沙漏refine network来提高速度(没有额外消耗时间)
③效果超过了之前的方法③计算速度比3D CONV强大。
Network
网络包含四个部分,特征提取,cost volume,3D 聚合模块和视差预测。
特征提取使用了类ResNet网络(PSMNet采用),使用了空洞卷积和金字塔池化模块。最后的三层特征层被叠加起来,得到320通道的featuremap。
CostVolume由两个部分组成,第一个部分是和PSMNet一样的特征拼接(错位拼接?