import numpy as np
#我们都知道,在元素列表或者数组中,我们可以用如同a[2]一样的表示方法,同样的,在Numpy中也有相对应的表示方法:
A = np.arange(3,15)
# array([3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14])
print(A)
range(3,15) #生成一个range object,而不是[0,1,2,3,4]
b = [i for i in range(3,15)]
print(b)
print(A[3]) # 6
#让我们将矩阵转换为二维的,此时进行同样的操作:
A = np.arange(3,15).reshape((3,4))
print(A)
print(A[2])
print(A[2][1])
#在Python的 list 中,我们可以利用:对一定范围内的元素进行切片操作,
#在Numpy中我们依然可以给出相应的方法:
print(A[1, 0:3]) # [7 8 9]
#逐行打印
for row in A:
print(row)
# 逐列打印,A.T表示对A进行转置
for column in A.T:
print(column)
A = np.arange(3,15).reshape((3,4))
print(A.flatten())
# array([3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14])
#这一脚本中的flatten是一个展开性质的函数,将多维的矩阵进行展开成1行的数列。而flat是一个迭代器,本身是一个object属性。
#以下两个效果一样
for item in A.flatten():
print(item)
for item in A.flat:
print(item)
#我们都知道,在元素列表或者数组中,我们可以用如同a[2]一样的表示方法,同样的,在Numpy中也有相对应的表示方法:
A = np.arange(3,15)
# array([3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14])
print(A)
range(3,15) #生成一个range object,而不是[0,1,2,3,4]
b = [i for i in range(3,15)]
print(b)
print(A[3]) # 6
#让我们将矩阵转换为二维的,此时进行同样的操作:
A = np.arange(3,15).reshape((3,4))
print(A)
print(A[2])
print(A[2][1])
#在Python的 list 中,我们可以利用:对一定范围内的元素进行切片操作,
#在Numpy中我们依然可以给出相应的方法:
print(A[1, 0:3]) # [7 8 9]
#逐行打印
for row in A:
print(row)
# 逐列打印,A.T表示对A进行转置
for column in A.T:
print(column)
A = np.arange(3,15).reshape((3,4))
print(A.flatten())
# array([3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14])
#这一脚本中的flatten是一个展开性质的函数,将多维的矩阵进行展开成1行的数列。而flat是一个迭代器,本身是一个object属性。
#以下两个效果一样
for item in A.flatten():
print(item)
for item in A.flat:
print(item)