Numpy 索引

import numpy as np

#我们都知道,在元素列表或者数组中,我们可以用如同a[2]一样的表示方法,同样的,在Numpy中也有相对应的表示方法:

A = np.arange(3,15)

# array([3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14])
print(A)
range(3,15)  #生成一个range object,而不是[0,1,2,3,4]   
b = [i for i in range(3,15)]
print(b)
print(A[3])    # 6


#让我们将矩阵转换为二维的,此时进行同样的操作:
A = np.arange(3,15).reshape((3,4))
print(A)
print(A[2])
print(A[2][1])
#在Python的 list 中,我们可以利用:对一定范围内的元素进行切片操作,
#在Numpy中我们依然可以给出相应的方法:
print(A[1, 0:3])  #  [7 8 9]

#逐行打印
for row in A:
    print(row)

# 逐列打印,A.T表示对A进行转置
for column in A.T:
    print(column)


A = np.arange(3,15).reshape((3,4))
         
print(A.flatten())   
# array([3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14])
#这一脚本中的flatten是一个展开性质的函数,将多维的矩阵进行展开成1行的数列。而flat是一个迭代器,本身是一个object属性。
#以下两个效果一样
for item in A.flatten():
    print(item)

for item in A.flat:
    print(item)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值