蓝桥杯 算法训练 最短路

问题描述

给定一个n个顶点,m条边的有向图(其中某些边权可能为负,但保证没有负环)。请你计算从1号点到其他点的最短路(顶点从1到n编号)。

输入格式

第一行两个整数n, m。

接下来的m行,每行有三个整数u, v, l,表示u到v有一条长度为l的边。

输出格式
共n-1行,第i行表示1号点到i+1号点的最短路。
样例输入
3 3
1 2 -1
2 3 -1
3 1 2
样例输出
-1
-2
数据规模与约定

对于10%的数据,n = 2,m = 2。

对于30%的数据,n <= 5,m <= 10。

对于100%的数据,1 <= n <= 20000,1 <= m <= 200000,-10000 <= l <= 10000,保证从任意顶点都能到达其他所有顶点。
很明显,因为存在负权边,Dijkstra算法在这里是无法使用的。如果使用Bellman-Ford算法,时间复杂度O(NE)(N为点数,E为边数)超时。因此只能采用优化最短路算法,这里采用SPFA算法。SPFA的复杂度大约是O(kE),k是每个点的平均进队次数(一般k是一个常数,在稀疏图中小于2)。
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <queue>
#include <vector>
const int INT=0x7fffffff;
using namespace std;
int dist[20004];
bool vis[20004];
struct node{
    int u,v,s;
}edg[200004];
queue<int>qu;
vector<int> vec[20004];
int main(){
    int m,n;
    while(~scanf("%d%d",&n,&m)){
        for(int i=0;i<=n;i++){
            dist[i]=INT;
            vis[i]=0;
        }
        for(int i=1;i<=m;i++){
            scanf("%d%d%d",&edg[i].u,&edg[i].v,&edg[i].s);
            vec[edg[i].u].push_back(i);
        }
        dist[1]=0,vis[1]=1;
        qu.push(1);
        while(!qu.empty()){
            int temp=qu.front();
            vis[temp]=0;
            qu.pop();
            for(int i=0;i<vec[temp].size();i++){
                int cnt=vec[temp][i];
                if(dist[edg[cnt].v]>edg[cnt].s+dist[edg[cnt].u]){
                    dist[edg[cnt].v]=edg[cnt].s+dist[edg[cnt].u];
                    if(!vis[edg[cnt].v]) qu.push(edg[cnt].v);
                }
            }
        }
        for(int i=2;i<=n;i++)
            cout<<dist[i]<<endl;
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值