使用orange进行聚类分析

前言

 本文是我这一系列博客的最后一篇,也是我最终作为作业交给数据挖掘老师的。在写这结课设计的过程,看了很多的博客给我带来很大的帮助,也学习了很多,写这些博客也只是想把自己一点点的经验分享给大家。

选择数据集

种子数据集:https://archive.ics.uci.edu/ml/datasets/seeds

    三种不同品种小麦籽粒几何性状的测定。用于软X射线技术和GRAINS构建七个实值属性,所有这些参数都是实值连续的。

    1、面积A, 
    2、周长P, 
    3、紧凑度C = 4 * pi * A / P ^ 2,4 
    4、籽粒长度, 
    5、籽粒宽度, 
    6、不对称系数 
    7、核槽的长度。 
    下载数据的文件格式为.txt格式,将文件格式改为.csv或.xlsx格式。

数据预处理

       打开orange软件,进行数据预处理

            Rank控件可以根据数据特征的相关性对其进行排名和筛选,双击控件:

 

可以看出,compactness和asymmetry特征相关性很低,将其筛除。也可以用Distributions控件通过观察compactness和asymmetry特征值的分布,评价其相关性。

聚类

1、K-means算法

       双击K-means控件,设置算法参数:

       输入固定簇数3,运行结果:

2、K-means++算法

       双击K-means控件,选择K-means++算法

       算法对2-10簇群进行打分个,2簇群轮廓分最高,结果为:

3、层次聚类

            先用Distances控件计算成对距离的矩阵,然后用Hierarchical Clustering控件显示从输入距离矩阵构造的层次聚类的树形图

       选择Top N = 3,传入数据流到Scatter Plot控件进行可视化:

结果分析:

       用Silhouette Plot轮廓组件评价聚类效果。数据越靠近数据簇中心,轮廓值越大;离簇中心越远,轮廓值越小:0为位于两簇之间的点,负数为错误划分到别的簇中。

K-means轮廓图:

K-means++轮廓图

层次轮廓图:

       通过对比其轮廓图,我们发现:在对该数据进行聚类时,K-means算法要比层次聚类要好,层次聚类中有出现负值;而k-means++算法将数据聚成两簇,没有达到我预期得到的聚类结果。

<think>好的,我现在需要帮助用户解决关于聚类分析可视化的问题。根据用户提供的引用资料,特别是引用[1]、[2]、[3],主要涉及Python中的聚类分析可视化方法,尤其是K均值聚类的例子。首先,我需要整理用户提到的引用内容,看看有哪些工具和方法被提到。 用户的问题是如何进行聚类分析的可视化,或者有哪些工具和示例可用。引用中提到了Python的库,比如matplotlib、seaborn、plotly,以及可能的scikit-learn中的功能。根据引用[3],有一个基于K均值的客户聚类分析可视化的案例,其中提到了丰富的可视化过程,这可能包括散点图、三维图、热力图等。 接下来,我需要确保回答符合系统级指令:使用正确的LaTeX格式,中文回答,生成相关问题,并正确添加引用标识。同时,回答需要结构清晰,分步骤说明实现方法,并给出示例代码。 首先,确定常用的可视化工具,如matplotlib、seaborn、plotly、scikit-learn的visualization模块。然后,分步骤说明数据预处理、模型训练、可视化方法,比如散点图、中心点标记、轮廓分析、降维可视化等。每个步骤需要结合引用中的信息,比如引用[3]中的K均值案例,引用[2]中的聚类分析基本原理。 示例代码部分需要展示一个完整的流程,包括数据加载、预处理、K均值聚类、可视化。代码要正确,使用Python,并可能引用到sklearn和matplotlib。同时,要提到其他工具如PCA降维、热力图等,如引用[3]中的案例可能涉及这些方法。 生成的相关问题需要与聚类分析可视化相关,比如工具推荐、评估方法、高维数据可视化技巧等,确保问题覆盖用户可能感兴趣的扩展方向。 最后,检查引用标识是否正确添加,每个引用对应的来源是否恰当,比如引用[3]对应K均值的案例,引用[2]对应基本原理和可视化解读。确保没有格式错误,LaTeX正确使用,如变量用$...$,独立公式用$$...$$,但在这个回答中可能较少需要公式,除非提到轮廓系数等指标,这时需要使用正确的LaTeX格式。</think>### 聚类分析可视化方法及工具 聚类分析的可视化可通过以下步骤实现,结合Python常用工具(如`matplotlib`、`seaborn`、`plotly`等)和算法库(如`scikit-learn`)完成[^3]。 --- #### **1. 常用工具及方法** - **基础可视化工具** - **Matplotlib/Seaborn**:用于绘制二维散点图、箱线图、热力图等,适合展示聚类分布和特征相关性[^1]。 - **Plotly**:支持交互式三维散点图和动态可视化,适合高维数据降维后的展示。 - **scikit-learn可视化模块**:内置聚类结果评估图(如轮廓图、肘部法则图)[^2]。 - **降维技术辅助可视化** 高维数据需通过PCA、t-SNE或UMAP降维至2D/3D后再可视化。例如: ```python from sklearn.decomposition import PCA pca = PCA(n_components=2) data_pca = pca.fit_transform(data_scaled) plt.scatter(data_pca[:,0], data_pca[:,1], c=cluster_labels) ``` - **聚类中心与边界可视化** 在散点图中标记聚类中心,或使用`Voronoi图`展示聚类边界: ```python centers = kmeans.cluster_centers_ plt.scatter(centers[:,0], centers[:,1], c='red', s=200, marker='X') ``` --- #### **2. 完整示例(基于K均值)** ```python # 引用库 import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.preprocessing import StandardScaler # 数据预处理 scaler = StandardScaler() data_scaled = scaler.fit_transform(data) # 训练K均值模型 kmeans = KMeans(n_clusters=3, random_state=42) cluster_labels = kmeans.fit_predict(data_scaled) # 可视化 plt.figure(figsize=(10,6)) plt.scatter(data_scaled[:,0], data_scaled[:,1], c=cluster_labels, cmap='viridis', alpha=0.6) plt.scatter(kmeans.cluster_centers_[:,0], kmeans.cluster_centers_[:,1], s=300, c='red', marker='X') plt.title('K均值聚类结果可视化') plt.xlabel('特征1') plt.ylabel('特征2') plt.show() ``` ![聚类结果示例图,含数据点与聚类中心标记][^3] --- #### **3. 高级可视化技巧** - **轮廓分析图**:评估聚类紧密度和分离度 ```python from sklearn.metrics import silhouette_samples, silhouette_score silhouette_avg = silhouette_score(data_scaled, cluster_labels) ``` - **热力图**:展示不同簇的特征均值差异 - **树状图**:适用于层次聚类(需使用`scipy.cluster.hierarchy`) --- #### **工具推荐** 1. **Python库**:`scikit-learn`(建模)、`matplotlib/seaborn`(静态图)、`plotly/altair`(交互图)[^3] 2. **平台工具**:Tableau(快速生成聚类热图)、Power BI(集成Python脚本) 3. **专业工具**:Orange(可视化编程)、ClusterGVis(R语言专用) ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值