Windows下安装Scikit-Learn库

前言

数据挖掘结课设计除了要剖析一个分类程序,还得会使用一个开源系统。下面介绍几个常见的开源系统及数据源:

几个开放的数据源

UCI Machine Learning Repository

https://archive.ics.uci.edu/ml/datasets.php

Kaggle Datasets

https://www.kaggle.com/datasets

微软数据集

https://msropendata.com/

KDD Cup (large data sets for data mining)

http://www.kdnuggets.com/datasets/kddcup.html

亚马逊数据集

https://registry.opendata.aws/

公共数据集资源收集

https://github.com/awesomedata/awesome-public-datasets

六个机器学习项目

https://elitedatascience.com/machine-learning-projects-for-beginners

我一开始选择尝试Scikit-Learn库,本文主要讲我安装的过程及遇到的一些问题。

安装环境

scikit-learn库是python做机器学习最常用的库。首先我们需要安装Python环境,去Python官网https://www.python.org/选择相应的版本下载:我选择的是python-3.7.2-amd64,接下来一路下一步安装,注意将Python加入环境变量中。已经安装过Python的,记住自己的版本号就OK了。

在安装Scikit-learn库之前,还需要安装必要的依赖包Numpy、Scipy、Matlotlib包。安装python第三方库时总会出现各种兼容问题,版本需要一致,安装顺序也很重要。如果这些包与Python版本不一致,需要先卸载掉。

pip uninstall scikit-learn 
pip uninstall numpy 
pip uninstall scipy 
pip uninstall matplotlib

下载安装包

不建议使用”pip install package”,它有时下载的包与python版本不一致;而是到官网下载相应版本。https://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy                                                                        https://www.lfd.uci.edu/~gohlke/pythonlibs/#scipy                                                              https://www.lfd.uci.edu/~gohlke/pythonlibs/#matplotlib                                                   https://www.lfd.uci.edu/~gohlke/pythonlibs/#scikit-learn

             其中cp37表示CPython 3.7版本,win_amd64指的是64位版本。 

安装

运行Windows 命令行运行程序cmd,并将当前目录用cd命令转到保存上面.whl文件所在的目录下,使用pip install xxx.whl,依次安装Numpy、Scipy、Matplotlib包,再安装Scikit-Learn。

安装Numpy

使用pip install numpy-1.15.4+mkl-cp37-cp37m-win_amd64.whl ,出现错误: 

改为:pip install --user numpy-1.15.4+mkl-cp37-cp37m-win_amd64.whl 即可

安装Matplotlib

使用pip install matplotlib-2.2.4-cp37-cp37m-win_amd64.whl 时发生错误,安装很长时间,也不知道什么原因就是安装不了。改为pip3.7  install matplotlib-2.2.4-cp37-cp37m-win_amd64.whl 即可

在python的交互式命令行中,输入下面代码,没有出现错误,即安装成功。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值